Let G=(V,E) be a finite simple graph. The Graovac-Ghorbani index of a graph G is defined as ABCGG(G)=∑uv∈E(G) √((nu(uv,G)+nv(uv,G)-2)/(nu(uv,G)nv(uv,G))), where nu(uv,G) is the number of vertices closer to vertex u than vertex v of the edge uv∈E(G). nv(uv,G) is defined analogously. The atom-bond connectivity index of a graph G is defined as ABC(G)=∑uv∈E(G)√((du+dv-2)(dudv)), where du is the degree of vertex u in G. Let G be a connected graph constructed from pairwise disjoint connected graphs G1,...,Gk by selecting a vertex of G1, a vertex of G2, and identifying these two vertices. Then continue in this manner inductively. We say that G is obtained by point-attaching from G1,...,Gk and that Gi 's are the primary subgraphs of G. In this paper, we give some lower and upper bounds on Graovac-Ghorbani and atom-bond connectivity indices for these graphs. Additionally, we consider some particular cases of these graphs that are of importance in chemistry and study their Graovac-Ghorbani and atom-bond connectivity indices.
E. Estrada, Atom–bond connectivity and the energetic of branched alkanes, Chem. Phys. 463 (2008) 422–425.
E. Estrada, L. Torres, L. Rodríguez and I. Gutman, An atom–bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. A (37) (1998) 849–855.
B. Furtula, Atom-bond connectivity index versus Graovac-Ghorbani analog, MATCH Commun. Math. Comput. 75 (2016) 233–242.
N. Ghanbari and S. Alikhani, Sombor index of certain graphs, Iranian J. Math. 12 (1) (2021) 27-37.
N. Ghanbari and S. Alikhani, Mostar index and edge Mostar index of polymers, Comp. Appl. 40 (260) (2021). DOI: 10.1007/s40314-021-01652-x.
M. Ghorbani, S. Rahmani and O. Ori, On the Graovac-Ghorbani Index, Iranian J. Math. 10 (4) (2019) 295–305.
A. Graovac and M. Ghorbani, A new version of atom-bond connectivity index, Acta Chim. Slov. 57 (2010) 609–612.
F. Harary and B. Uhlenbeck, On the number of Husimi trees, I. Proceedings of the National Academy of Sciences, 39 (4) (1953) 315–322.
F. Hayata and B. Zhou, On cacti with large Mostar index, Filomat 33 (15) (2019) 4865–4873.
K. Husimi, Note on Mayer’s theory of cluster integrals, Chem. Phys. 18 (1950) 682–684.
H. Khalifeh, H. Yousefi–Azari and A. R. Ashrafi, Computing Wiener and Kirchhoff indices of a triangulane, Indian J. Chem. 47A (2008) 1503–1507.
D. Pacheco, L. de Lima and C. S. Oliveira, On the Graovac-Ghorbani index for bicyclic graphs with no pendent vertices, MATCH Commun. Math. Comput. 86 (2021) 429–448.
R. J. Riddell, Contributions to the Theory of Condensation, PhD Thesis, University of Michigan, Ann Arbor, 1951.
M. Rostami and M. Sohrabi-Haghighat, Further results on new version of atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 71 (2014) 21–32.
M. Rostami, M. Sohrab-Haghifhat and M. Ghorbani, On second atom-bond connectivity index, Iranian J. Math. 4 (2013) 265–270.
A. Sadeghieh, S. Alikhani, N. Ghanbari and A. J. M. Khalaf, Hosoya polynomial of some cactus chains, Mathematics 4 (2017) 1305638.
A. Sadeghieh, N. Ghanbari and S. Alikhani, Computation of Gutman index of some cactus chains, Elect. J. Graph Theory Appl. 6 (1) (2018) 138–151.
H. Wiener, Structural determination of the paraffin boiling points, J. Amer. Chem. 69 (1947) 17–20.
Ghanbari, N. (2022). On the Graovc-Ghorbani and Atom-Bond Connectivity Indices of Graphs from Primary Subgraphs. Iranian Journal of Mathematical Chemistry, 13(1), 45-72. doi: 10.22052/ijmc.2022.246079.1612
MLA
Nima Ghanbari. "On the Graovc-Ghorbani and Atom-Bond Connectivity Indices of Graphs from Primary Subgraphs". Iranian Journal of Mathematical Chemistry, 13, 1, 2022, 45-72. doi: 10.22052/ijmc.2022.246079.1612
HARVARD
Ghanbari, N. (2022). 'On the Graovc-Ghorbani and Atom-Bond Connectivity Indices of Graphs from Primary Subgraphs', Iranian Journal of Mathematical Chemistry, 13(1), pp. 45-72. doi: 10.22052/ijmc.2022.246079.1612
VANCOUVER
Ghanbari, N. On the Graovc-Ghorbani and Atom-Bond Connectivity Indices of Graphs from Primary Subgraphs. Iranian Journal of Mathematical Chemistry, 2022; 13(1): 45-72. doi: 10.22052/ijmc.2022.246079.1612