On the Graovc-Ghorbani and Atom-Bond Connectivity Indices of Graphs from Primary Subgraphs

Document Type : Research Paper


Department of Informatics‎ , ‎University of Bergen‎, ‎P.O‎. ‎Box 7803‎, ‎5020 Bergen‎, ‎Norway


Let G=(V,E) be a finite simple graph. The Graovac-Ghorbani index of a graph G is defined as ABCGG(G)=∑uv∈E(G) √((nu(uv,G)+nv(uv,G)-2)/(nu(uv,G)nv(uv,G))), where nu(uv,G) is the number of vertices closer to vertex u than vertex v of the edge uv∈E(G).  nv(uv,G) is defined analogously. The atom-bond connectivity index of a graph G is defined as ABC(G)=∑uv∈E(G)√((du+dv-2)(dudv)), where du is the degree of vertex u in G. Let G be a connected graph constructed from pairwise disjoint connected graphs G1,...,Gk by selecting a vertex of G1, a vertex of G2, and identifying these two vertices. Then continue in this manner inductively. We say that G is obtained by point-attaching from G1,...,Gk and that Gi 's are the primary subgraphs of G. In this paper, we give some lower and upper bounds on Graovac-Ghorbani and atom-bond connectivity indices for these graphs. Additionally, we consider some particular cases of these graphs that are of importance in chemistry and study their Graovac-Ghorbani and atom-bond connectivity indices.


  1. A‎. ‎Ali‎, ‎K‎. ‎Ch‎. ‎Das‎, ‎D‎. ‎Dimitrov‎ and ‎B‎. ‎Furtula‎, ‎Atom–bond connectivity index of graphs‎: ‎a review over extremal results and bounds‎, ‎Discrete Math‎. ‎‎ ‎5 (2021) 68–93‎.
  2. S‎. ‎Alikhani‎ and ‎N‎. ‎Ghanbari‎, ‎Sombor index of polymers‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎‎ ‎86 (3) (2021) 715–728‎.
  3. M‎. ‎Chellali‎, ‎Bounds on the 2-domination number in‎ ‎cactus graphs, ‎Opuscula Mathematica ‎26 (2006) 5–12‎.
  4. K‎. ‎Ch‎. ‎Das‎, ‎On the Graovac-Ghorbani index of graphs‎, Math. Comp. ‎275 (C) (2016) 353–360‎.
  5. D‎. ‎Dimitrov‎, ‎B‎. ‎Ikica‎ and ‎R‎. ‎Škrekovski‎. ‎Remarks on the Graovac-Ghorbani index of‎ ‎bipartite graphs‎, Appl‎. ‎Math‎. ‎‎ ‎293 (2017) 370–376.‎
  6. V‎. ‎Diudea‎, ‎I‎. ‎Gutman‎ and ‎J‎. ‎Lorentz‎, ‎Molecular Topology‎, Nova Science, Huntington, New York, ‎2001‎.
  7. D‎. ‎Emeric‎ ‎and S‎. ‎Klavžar‎, ‎Computing Hosoya polynomials of graphs from primary subgraphs‎, ‎MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎‎ ‎70 (2013) 627–644‎.
  8. E‎. ‎Estrada‎, ‎Atom–bond connectivity and the energetic of branched alkanes‎, Chem‎. ‎Phys‎. ‎‎ ‎463 (2008) 422–425.‎
  9. E‎. ‎Estrada‎, ‎L‎. ‎Torres‎, ‎L‎. ‎Rodríguez and ‎I‎. ‎Gutman‎, ‎An atom–bond connectivity index‎: ‎modelling the enthalpy of formation of alkanes‎, Indian J‎. ‎‎ ‎A (37) (1998) 849–855‎.
  10. B‎. ‎Furtula‎, ‎Atom-bond connectivity index versus Graovac-Ghorbani analog‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎‎ ‎75 (2016) 233–242‎.
  11. N‎. ‎Ghanbari‎ and ‎S‎. ‎Alikhani‎, ‎Sombor index of certain graphs‎, Iranian J‎. ‎Math‎. ‎‎ ‎12 (1)‎ ‎(2021) 27-37‎.
  12. N‎. ‎Ghanbari‎ and ‎S‎. ‎Alikhani‎, ‎Mostar index and edge Mostar index of polymers‎, Comp‎. ‎Appl‎. ‎‎ ‎40 (260) (2021)‎. DOI: 10.1007/s40314-021-01652-x. ‎
  13. M‎. ‎Ghorbani‎, ‎S‎. ‎Rahmani‎ and ‎O‎. ‎Ori‎, ‎On the Graovac-Ghorbani Index‎, Iranian J‎. ‎Math‎. ‎‎ ‎10 (4)‎ ‎(2019) 295–305‎.
  14. A‎. ‎Graovac‎ and ‎M‎. ‎Ghorbani‎, ‎A new version of atom-bond connectivity index‎, ‎Acta‎ ‎Chim‎. ‎Slov‎. ‎57 (2010) 609–612.‎
  15. A‎. ‎Graovac‎, ‎M‎. ‎Ghorbani‎ and ‎‎M‎. ‎A‎. ‎Hosseinzadeh‎, ‎Computing fifth geometric-arithmetic index for‎ ‎nanostar dendrimers‎, Math. ‎Nanosci.‎ ‎1 (1) (2011) 33–42.‎
  16. F‎. ‎Harary‎‎ and ‎‎B‎. ‎Uhlenbeck‎, ‎On the number of Husimi‎ ‎trees‎, I‎. ‎Proceedings of the National Academy of Sciences‎, ‎39 (4) (1953) ‎ 315–322‎.
  17. F‎. ‎Hayata‎‎ and ‎‎B‎. ‎Zhou‎, ‎On cacti with large Mostar index‎, Filomat‎ ‎33 (15) (2019) 4865–4873‎.
  18. K‎. ‎Husimi‎, ‎Note on Mayer’s theory of cluster integrals, Chem. Phys. ‎18 (1950) 682–684.‎
  19. H‎. ‎Khalifeh‎, ‎H‎. ‎Yousefi–Azari‎‎ and ‎‎A. R‎. ‎Ashrafi‎, ‎Computing Wiener and Kirchhoff‎ ‎indices of a triangulane‎, ‎Indian J‎. ‎Chem.‎ ‎47A (2008) 1503–1507‎.
  20. D‎. ‎Pacheco‎, ‎L‎. ‎de Lima‎ and ‎‎C‎. ‎S‎. ‎Oliveira‎, ‎On the Graovac-Ghorbani index for bicyclic‎ ‎graphs with no pendent vertices‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎‎ ‎86 (2021) 429–448‎.
  21. R‎. ‎J‎. ‎Riddell‎, Contributions to the Theory of Condensation‎, ‎PhD Thesis, ‎University of Michigan‎, ‎Ann Arbor, 1951‎.
  22. M‎. ‎Rostami‎‎ and ‎‎M‎. ‎Sohrabi-Haghighat‎, ‎Further results on new version of atom-bond‎ ‎connectivity index‎, MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem‎. ‎71 (2014) 21–32‎.
  23. M‎. ‎Rostami‎, ‎M‎. ‎Sohrab-Haghifhat‎‎ and ‎‎M‎. ‎Ghorbani‎, ‎On second atom-bond connectivity‎ ‎index‎, ‎Iranian J‎. ‎Math‎. ‎‎ ‎4 (2013) 265–270‎.
  24. A‎. ‎Sadeghieh‎, ‎S‎. ‎Alikhani‎, ‎N‎. ‎Ghanbari‎‎ and ‎‎A‎. ‎J‎. ‎M‎. ‎Khalaf‎, ‎Hosoya polynomial of some cactus chains‎, Mathematics‎ ‎4 (2017) 1305638‎.
  25. A‎. ‎Sadeghieh‎, ‎N‎. ‎Ghanbari‎ and ‎S‎. ‎Alikhani‎, ‎Computation of Gutman index of some cactus chains‎, Elect‎. ‎J‎. ‎Graph Theory Appl.‎ ‎6 (1) (2018) 138–151‎.
  26. H‎. ‎Wiener‎, ‎Structural determination of the paraffin boiling points‎, J‎. ‎Amer‎. ‎Chem‎. ‎‎ ‎69 (1947) 17–20‎.