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Let         be a finite simple graph. The Graovac-Ghorbani 

index of a graph   is defined as 

          ∑         √
                   

                
   

where          is the number of vertices closer to vertex   than 

vertex   of the edge        .          is defined 

analogously. The atom-bond connectivity index of a graph G is 

defined as 

        ∑         √
       

    
   

where    is the degree of vertex   in  . Let   be a connected graph 

constructed from pairwise disjoint connected graphs         by 

selecting a vertex of   , a vertex of   , and identifying these 

two vertices. Then continue in this manner inductively. We say that 

  is obtained by point-attaching from         and that   's are the 

primary subgraphs of  . In this paper, we give some upper bounds 

on Graovac-Ghorbani and atom-bond connectivity indices for these 

graphs. Additionally, we consider some particular cases of these 

graphs that are of importance in chemistry and study their Graovac-

Ghorbani and atom-bond connectivity indices. 
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1. INTRODUCTION 

A molecular graph is a simple graph such that its vertices correspond to the atoms and the 

edges to the bonds of a molecule. Let         be a finite, connected, simple graph. A 

topological index of   is a real number related to  . It does not depend on the labeling or 
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pictorial representation of a graph. The Wiener index      is the first distance based 

topological index defined as      ∑                
 

 
∑                 with the 

summation runs over all pairs of vertices of   [26]. The topological indices and graph 

invariants based on distances between vertices of a graph are widely used for characterizing 

molecular graphs, establishing relationships between structure and properties of 

molecules, predicting biological activity of chemical compounds, and making their 

chemical applications. The Wiener index is one of the most used topological indices with 

high correlation with many physical and chemical indices of molecular compounds [26]. In 

2010, Graovac et al. [14] introduced a new bond-additive structural invariant as a 

quantitative refinement of the distance nonbalancedness and also a measure of peripherality 

in graphs. They used the name Graovac-Ghorbani index for this invariant which is defined 

as  

          ∑         √
                   

                
  

where          is the number of vertices of   closer to   than to  , and 

similarly,          is the number of vertices closer to   than to  . Equidistant vertices 

from   and   are not taken into account to compute          and         . They 

determined some bounds on this index. Graovac et al. in [15] computed that for some 

nanostar dendrimers. Some other upper and lower bounds on the       index and also 

characterizing the extremal graphs was studied by Das [4]. Ghorbani et al. in [13] 

calculated the       of an infinite family of fullerenes. More results on this index can be 

found in [5, 10, 20, 22, 23]. 

Graovac and Ghorbani defined          [14] which motivated by the definition of 

atom-bond connectivity index. Initially, the atom-bond connectivity index of a graph 

 ,       , was defined [9] as:  

        √ ∑         √
       

    
  

but later on, this index was very slightly redefined [8] by dropping the factor √ . We refer 

the reader to [1] for a complete review of the atom-bond connectivity index. 

Cactus graphs were first known as Husimi tree, they appeared in the scientific 

literature more than sixty years ago in papers by Husimi and Riddell concerned with cluster 

integrals in the theory of condensation in statistical mechanics [16, 18, 21]. We refer the 

reader to [2, 3, 11, 12, 17, 24, 25] for some aspects of parameters of cactus graphs. 

In this paper, we consider the Graovac-Ghorbani and atom-bond connectivity 

indices of graphs from primary subgraphs. For convenience, the definition of these kind of 

graphs will be given in the next section. In Section 2, we obtain some upper bounds for 

Graovac-Ghorbani and atom-bond connectivity indices of graphs from primary 
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subgraphs. In Section 3, we obtain the Graovac-Ghorbani and atom-bond connectivity 

indices of families of graphs that are of importance in chemistry. 

 

2. MAIN RESULTS 

Let   be a connected graph constructed from pairwise disjoint connected graphs         

as follows. Select a vertex of   , a vertex of   , and identify these two vertices. Then 

continue in this manner inductively. Note that the graph   constructed in this way has a 

tree-like structure, the   's being its building stones, see Figure 1. 

 

        

Figure  1: A graph with subgraph units        . 

  

Usually say that   is obtained by point-attaching from         and that   's are 

the primary subgraphs of  . A particular case of this construction is the decomposition of a 

connected graph into blocks (see [7]). We consider some particular cases of these graphs 

and study their atom-bond connectivity index. As an example of point-attaching 

graph, consider the graph    and   copies of   . By definition, the graph        is 

obtained by identifying each vertex of    with a vertex of a unique   . The graph        

is shown in Figure 2. 
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Figure  2: The graph        and       , respectively.    

  

Theorem 2.1. For the graph        (see Figure 2), and     we have: 

i.             
      

        
√           

 

 
   √       

                                    √
      

            
  

ii.                
      

  
√           √

      

        
  

 

Proof.  

(i) There are 
      

 
 edges with endpoints of degree      . Also there are 

       edges with endpoints of degree       and    , and there are 

       
 

 
    edges with endpoints of degree    . Therefore   

             
      

 
√

                 

              
 

                                    √
               

            
 

                                     
 

 
   √

             

          
  

and we have the result. 
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(ii) First consider the edge      in   . There are   vertices which are closer to    

than    (including    itself), also there are   vertices closer to    than   , and 

there are 
      

 
 edges like      in       . Now consider the edge    in the  -

th   . There is one vertex which is closer to   than   and that is   itself, and 

visa versa. Finally, consider the edge     in the  -th   . There are        

  vertices which are closer to    than   (including   ), also there is one vertex 

closer to   than    which is  , and there are        edges like     in 

      .  

Therefore we have the result.                                                                                              ■ 

 

2.1   UPPER BOUNDS 

 

By the definition of the atom-bond connectivity and Graovac-Ghorbani indices, we have 

the following easy result: 

 

Proposition 2.2. Let   be a disconnected graph with components    and    Then 

i.                       . 

ii.                               

 

Now we examine the effects on        and          when   is modified by 

deleting an edge or vertex of  .  

  

Theorem 2.3. Let         be a graph and        which is not a pendant 

edge. Also let    be the degree of vertex   in  , and    be the number of vertices of   

closer to   than to  . Then, 

i.                     {
√     

  
 
√     

  
}   

ii.                        {
√     

  
 
√     

  
}   

    

Proof. First we remove edge   and find         . For every integer      , we have 

√
         

      
 √

     

  
.  Now Obviously, by adding edge   to     and √

       

    
 to 

        , then        is less than that or equal to it. So   

                 √
       

    
 

                            {√
       

    
 √

       

    
} 
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                            {
√     

  
 
√     

  
}   

and therefore we have the result. The proof is similar to Part (i).                                         ■ 

 

By the same argument as the proof of Theorem 2.3, and deleting a vertex at the first 

step, we have: 

  

Theorem 2.4. Let         be a graph and    . Also let    be the degree of vertex   

in  . Then,     

i.                 ∑         {
√     

  
 
√     

  
}   

ii.                     ∑         {
√     

  
 
√     

  
}   

  

Here we study some bounds on the atom-bond connectivity and Graovac-Ghorbani 

indices for links of graphs and circuits of graphs. 

   

 
   

Figure  3: Link of   graphs           . 

    

Theorem 2.5. Let            be a finite sequence of pairwise disjoint connected graphs 

and let            . Let   be the link of graphs        
  with respect to the vertices 

          
 , Figure 3, and suppose that      . Then, 

i.        ∑   
           ∑     

      {
√      

  

   

 
√    

  

     

}  

ii.          ∑   
             ∑     

      {
√      

  

   

 
√    

  

     

}  

Proof. f Wirst remove the edge     , see Figure 3. By Theorem 2.3, we have   

                        
√      

   

 
√      

   

   

Let    be the link graph related to graphs        
  with respect to the vertices 

          
 . Then by Proposition 2.2 we have,   

                              

and therefore,   
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√      

   

 
√      

   

   

By continuing this process, we have the result. The proof of (ii) is similar to Part (i).         ■ 

    

Figure 4: Circuit of   graphs           . 

    

Theorem 2.6. Let            be a finite sequence of pairwise disjoint connected graphs 

and let          . Let   be the circuit of graphs        
  with respect to the vertices 

       
  and obtained by identifying the vertex    of the graph    with the  -th vertex of the  

cycle graph    (Figure 4) and suppose that      . Then,    

i.           {
√      

   

 
√      

   

}  ∑   
           

                      ∑     
      {

√      
  

   

 
√    

  

     

} , 

ii.             {
√      

   

 
√      

   

}  ∑   
               

                                   ∑     
      {

√      
  

   

 
√    

  

     

} . 

 

Proof. First we remove the edge     , Figure 4. By Theorem 2.3, we have   

                        
√      

   

 
√      

   

   

Now we remove edge     . Then,   

                               
√      

   

 
√      

   

  

                    {
√      

   

 
√      

   

}   
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Let    be the graph related to circuit graph with        
  with respect to the vertices        

  

and removing the edge     . Then by Proposition 2.2 we have,   

                                     

and therefore,   

                            
√      

   

 
√      

   

  

                    {
√      

   

 
√      

   

}   

By continuing this process, we have the result. The proof of (ii) is similar to Part (i).         ■ 

  

2.2   SOME OTHER UPPER BOUNDS FOR THE GRAOVACGHORBAN IINDEX 

 

In this subsection, we consider some special graphs from primary subgraphs and present 

upper bounds for the Graovac-Ghorbani index of them.  The following theorem is about the 

link of graphs. 

  

Theorem 2.7. Let            be a finite sequence of pairwise disjoint connected graphs 

and let            . Let   be the link of graphs        
  with respect to the vertices 

          
 , see Figure 3. Then, 

  

                         ∑   
             

                      ∑     
   √

        

∑   
          ∑   

            
  

Proof. Consider the graph    (Figure 3) and let            be the number of vertices of    

closer to   than   in   , Also let           be the number of vertices of   closer to   than 

  in  . By the definition of Graovac-Ghorbani index, we have: 

               ∑         √
                   

                
 

  ∑   
   ∑          √

                     

                  
 

  ∑     
   ∑             √

   
                

            

   
               

          
 

  ∑   
   ∑                                          √

                     

                  
 

  ∑   
   ∑                                          √
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  ∑   
   ∑                                          √

                     

                  
 

    ∑   
   ∑                                          √

                     

                  
 

    ∑   
   ∑                                          √

                     

                  
 

    ∑     
   ∑             √

   
                

            

   
               

          
 

   ∑   
   ∑                                          

 √
                                  

                                 
 

    ∑   
   ∑                                          

 √
           ∑   

                      ∑   
              

            ∑   
                       ∑   

             
 

    ∑   
   ∑                                          

√
           ∑   

                       

            ∑   
                     

 

    ∑   
   ∑                                          √

                      ∑   
              

                      ∑   
             

 

    ∑   
   ∑                                          √

                       

                    
 

    ∑     
   √

∑   
           ∑   

              

∑   
          ∑   

            
  

 

Since for every non negative integers     and  , √
       

      
 √

     

  
    

                   ∑   
   ∑                                          √

                       

                    
   

      ∑   
   ∑                                          √

                       

                    
   

      ∑   
   ∑                                          √

                       

                    
   

      ∑   
   ∑                                          √

                       

                    
   

      ∑   
   ∑                                          √

                       

                    
   

      ∑     
   √

∑   
           ∑   

              

∑   
          ∑   

            
 

                 ∑   
             

      ∑     
   √

∑   
           ∑   

              

∑   
          ∑   
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and therefore we have the result.                                                                                            ■ 

 

By the same argument similar to the proof of the Theorem 2.7, we have the 

following theorem which is about the chain of graphs: 

Theorem 2.8. Let            be a finite sequence of pairwise disjoint connected graphs 

and let             . Let              be the chain of graphs        
  with respect to the 

vertices           
  which obtained by identifying the vertex    with the vertex      for 

            (Figure 5). Then, 

                            ∑   
             ∑     

   √
        

∑   
          ∑   

            
  

  

 
 

Figure  5: Chain of   graphs           . 

    

With similar argument to the proof of the Theorem 2.7, we have the following 

theorem which is about the bouquet of graphs: 

  

Theorem 2.9. Let              be a finite sequence of pairwise disjoint connected graphs 

and let          . Let              be the bouquet of graphs        
  with respect to the 

vertices        
  and obtained by identifying the vertex    of the graph    with   (see Figure 

6). Then, 

                            ∑   
               ∑     

   √
        

∑   
          ∑   

            
  

 

   

Figure  6: Bouquet of   graphs            and             . 
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Now we consider the circuit of graphs. 

  

Theorem 2.10. Let            be a finite sequence of pairwise disjoint connected graphs 

and let          . Let   be the circuit of graphs        
  with respect to the vertices 

       
  and obtained by identifying the vertex    of the graph    with the  -th vertex of 

the cycle graph   , Figure 4. Then, 

                      ∑   
              √

        

              
 ∑     

   √
        

                
  

 

Proof. First consider the edge     . There are two cases,   is even or odd. If      for 

some    , then, the vertices in the graphs               are closer to    than   , and 

the rest are closer to    than   . So,   

 √
                         

                      
 √

∑   
           ∑   

              

∑   
          ∑   

            
 

                                            √
        

∑   
          ∑   

            
 

                                            √
        

               
 

                                            √
        

              
  

By the same argument, for every       ,        , we have: 

       √
   

                
            

   
               

          
 √

        

                
  

If        for some    , then, the vertices in the graphs                 are 

closer to    than   , and the vertices in the graphs                     are closer to    

than   . The vertices in the graph    have the same distance to    and   . So 

√
                         

                      
 √

∑     
           ∑     

              

∑     
          ∑     

            
 

                                            √
                

∑     
          ∑     

            
. 

Therefore, 

 √
                         

                      
 √

                

                 
 

                                            √
                

              
 

                                            √
        

              
  

By the same argument, for every       ,        , we have: 
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 √
   

                
            

   
               

          
 √

        

                
  

Now by the definition of Graovac-Ghorbani index and similar argument like the proof of 

the Theorem 2.7, we have the result.                                                                                      ■ 

  

3. CHEMICAL APPLICATIONS 

In this section, we apply our previous results in order to obtain the atom-bond connectivity 

and Graovac-Ghorbani indices of families of graphs that are of importance in chemistry. 

 

3.1   SPIRO-CHAINS 

 

Spiro-chains are defined in [6]. Making use of the concept of chain of graphs, a spiro-chain 

can be defined as a chain of cycles. We denote by        the chain of   cycles    in which 

the distance between two consecutive contact vertices is  , see        in Figure 7. 

 

                       

 

Figure  7: The graph       . 

  

Theorem 3.1. For the graph        (   ), we have              
  

√ 
  

 

Proof. There are        edges with endpoints of degree 2 and 4. Also there are    

       edges with endpoints of degree 2. Therefore   

                   √
     

    
            √

     

    
  

and we have the result.                                                                                                           ■ 

 

Theorem 3.2. For the graph       , we have             
      

√ 
 

     √ 

 
  

 

Proof. There are     edges with endpoints of degree 4. Also there are    edges with 

endpoints of degree 4 and 2, and there are         edges with endpoints of degree 

2. Therefore by the definition of the atom-bond connectivity, we have the result.                ■ 
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Theorem 3.3. Let    be the chain triangular graph of order  . Then,   

i. for every    , and    , if     , we have: 

            ∑   
   (√

    

    
 √

     

       
 √

    

               
)  

and if       , ne t we have: 

 

            ∑   
   (√

    

    
 √

       

       
 √

  

               
) 

                         √
  

    
 

 √ 

    
  

ii. for every    ,          
    

√ 
 

     √ 

 
   

 

    

Figure  8: Chain triangular cactus    . 

   

Proof. (i) We consider the following cases: 

Case 1. Suppose that   is even, and      for some    . Consider the     as 

shown in Figure 8. One can easily check that whatever happens to computation of 

Graovac-Ghorbani index related to the edge      in the    -th triangle in    , is the 

same as computation of Graovac-Ghorbani index related to the edge 

               in the         -th triangle. The same goes for      and 

              , and also for      and               . So for computing Graovac-

Ghorbani index, it suffices to compute the √
                       

                    
 for every 

          in the first   triangles and then multiple that by 2. So from now, we 

only consider the first   triangles. 

Consider the blue edge      in the    -th triangle. There are          

vertices which are closer to    than   , and there is one vertex closer to    than 

  . So, √
   

              
            

   
             

          
 √

    

    
. 



58                                                                                                                                                       GHANBARI
 

 

Now consider the green edge      in the    -th triangle. There are      

     vertices which are closer to    than   , and there is one vertex closer to    

than   . So, √
   

              
            

   
             

          
 √

     

       
. 

Finally, consider the red edge      in the    -th triangle. There are      

     vertices which are closer to    than   , and there are          vertices 

closer to    than   . So, √
   

              
            

   
             

          
 √

    

               
. 

Since we have   edges like blue one,   edges like green one and   edges 

like red one,  by our argument, we have: 

             ∑   
   (√

    

    
 √

     

       
 √

    

               
). 

Case 2. Suppose that   is odd and        for some    . Now consider the 

      as shown in Figure 9. One can easily check that whatever happens to 

computation of Graovac-Ghorbani index related to the edge      in the    -th 

triangle in      , is the same as computation of Graovac-Ghorbani index related to 

the edge                in the         -th triangle. The same goes for      

and               , and also for      and               . So for computing 

Graovac-Ghorbani index, it suffices to compute √
                           

                        
 for 

every edge             in the first   triangles and then multiple that by 2 and 

add it to ∑      √
                           

                        
  where             . So from 

now, we only consider the first   triangles and the middle one. 

Consider the blue edge      in the    -th triangle. There are          

vertices which are closer to    than   , and there is one vertex closer to    than 

  . So, √
   

                
              

   
               

            
 √

    

    
. 

Now consider the green edge      in the    -th triangle. There are    

     vertices which are closer to    than   , and there is one vertex closer to    

than   . So, √
   

                
              

   
               

            
 √

       

       
. 

Next consider the red edge      in the    -th triangle. There are        

     vertices which are closer to    than   , and there are          vertices 

closer to    than   . So, √
   

                
              

   
               

            
 √

  

               
. 

Finally, consider the middle triangle. For the edge   , there are      

vertices which are closer to   than  , and there is one vertex closer to   than  . Also 

for the edge   , there are      vertices which are closer to   than  , and there is 
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one vertex closer to   than   and for the edge   , there are      vertices which 

are closer to   than  , and there are      vertices closer to   than 

 . Hence, ∑      √
                           

                        
  √

  

    
 

√  

    
, where   

          . 

Since we have   edges like blue one,   edges like green one and   edges 

like red one, by our argument, we have: 

               ∑   
   (√

    

    
 √

       

       
 √

  

               
) 

                           √
  

    
 

 √ 

    
  

Therefore, we have the result.  

(ii) It follows from Theorem 3.2.                                                                                ■ 



 

Figure  9: Chain triangular cactus      . 

 

Theorem 3.4. . Let    be the para-chain square cactus graph of order  . Then,  

 

i. for every    , and    , we have: 

           

{
 

 



 ∑   
   √

    

               
               

 (∑   
   √

    

               
)  

 √    

    
                

 

ii. for every    ,           √    
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Figure  10: Para-chain square cactus    .  

Proof. (i) We consider the following cases: 

Case 1. Suppose that   is even and      for some    . Now consider the     

as shown in Figure 10. One can easily check that whatever happens to computation 

of Graovac-Ghorbani index related to the edge      in the    -th rhombus in    , is 

the same as computation of Graovac-Ghorbani index related to the edge 

               in the         -th rhombus. The same goes for      and 

              , for      and               , and also for      and 

              . So for computing Graovac-Ghorbani index, it suffices to compute 

the √
                       

                    
 for every           in the first   rhombus and then 

multiple that by 2. So from now, we only consider the first   rhombus. 

Consider the red edge      in the    -th rhombus. There are        

     vertices which are closer to    than   , and there are      vertices closer to 

   than   . So, √
   

              
            

   
             

          
 √

    

               
. 

One can easily check that the edges     ,      and      have the same 

attitude as     . Since we have   edges like blue one,   edges like green one,   

edges like yellow one and   edges like red one, then by our argument, we 

have              ( ∑   
   √

    

               
). 

 

Case 2. Suppose that   is odd and        for some    . Now consider the 

      as shown in Figure 11. One can easily check that whatever happens to 

computation of Graovac-Ghorbani index related to the edge      in the    -th 

rhombus in      , is the same as computation of Graovac-Ghorbani index related 

to the edge                in the         -th rhombus. The same goes for 

     and               , for      and               , and also for      and 

              . So for computing Graovac-Ghorbani index, it suffices to compute 

the √
                           

                        
 for every             in the first   rhombus and 

then multiple that by 2 and add it to ∑      √
                           

                        
, where 

               . So from now, we only consider the first     rhombus. 

Consider the red edge      in the    -th rhombus. There are        

         vertices which are closer to    than   , and there are      vertices 

closer to    than   . So, √
   

                
              

   
               

            
 √

    

               
. 
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One can easily check that the edges     ,      and      have the same 

attitude as     . 

Now consider the middle rhombus. For the edge   , there are      

vertices which are closer to   than  , and there are      vertices closer to   than 

 . the edges   ,    and    have the same attitude as 

  . Hence, ∑      √
                           

                        
 

 √    

    
, where 

               . 

Since we have   edges like blue one,   edges like green one,   edges like 

yellow one and   edges like red one, then by our argument, we have: 

              ( ∑   
   √

    

               
)  

 √    

    
  

Therefore, we have the result.  

(ii) It follows from Theorem 3.1.                                                                                ■ 



  

Figure  11: Para-chain square cactus      .  

   

Theorem 3.5.  Let    be the para-chain square cactus graph of order  . Then,   

i.  for every    , and    , if     , we have: 

             √   (∑   
   √

    

               
)  

and if       , ne t we have: 

                 √  
 √    

    
  (∑   

   √
    

               
)   

 ii.  for every    ,          
    

√ 
 

     √ 
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Figure  12: Para-chain square cactus    .  

 

Proof. (i) We consider the following cases: 

Case 1. Suppose that   is even and      for some    . Now consider the     

as shown in Figure 12. One can easily check that whatever happens to computation 

of Graovac-Ghorbani index related to the edge      in the    -th square in    , is 

the same as computation of Graovac-Ghorbani index related to the edge 

               in the         -th square. The same goes for      and 

              , for      and               , and also for      and 

              . So for computing Graovac-Ghorbani index, it suffices to compute 

the √
                       

                    
 for every           in the first   squares and then 

multiple that by 2. So from now, we only consider the first   squares. 

Consider the yellow edge      in the    -th square. There are         

vertices which are closer to    than   , and there are   vertices closer to    than    

which is   . So, √
   

              
            

   
             

          
 

√ 

 
. By the same argument, the same 

happens to the edge     . 

Now consider the blue edge      in the    -th square. There are      

vertices which are closer to    than   , and there are             vertices 

closer to    than   . So, √
   

              
            

   
             

          
 √

    

               
. By the 

same argument, the same happens to the edge     . 

Since we have   edges like blue one,   edges like green one,   edges like 

yellow one and   edges like red one, then by our argument, we have: 

             ( ∑   
   

√ 

 
  ∑   

   √
    

               
)   

Case 2. Suppose that   is odd and        for some    . Now consider the 

      as shown in Figure 13. One can easily check that whatever happens to 

computation of Graovac-Ghorbani index related to the edge      in the    -th 

square in      , is the same as computation of Graovac-Ghorbani index related to 
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the edge                in the         -th square. The same goes for      and 

              , for      and               , and also for      and 

              . So for computing Graovac-Ghorbani index, it suffices to compute 

the √
                           

                        
 for every             in the first   squares and 

then multiple that by 2 and add it to ∑      √
                           

                        
, where 

               . So from now, we only consider the first     squares. 

Consider the yellow edge      in the    -th square. There are           

vertices which are closer to    than   , and there are   vertices closer to    than 

  . So, √
   

                
              

   
               

            
 

√ 

 
. By the same argument, the same 

happens to the edge     . 

Now consider the blue edge      in the    -th square. There are      

vertices which are closer to    than   , and there are                 

vertices closer to    than   . So, √
   

                
              

   
               

            
 

√
    

               
. By the same argument, the same happens to the edge     . 

Now consider the middle square. For the edge   , there are      vertices 

which are closer to   than  , and there are      vertices closer to   than  . The 

edge    has the same attitude as   . But for the edge   , there are           

vertices which are closer to   than  , and there are   vertices closer to   than  , and 

the edge    has the same attitude as 

  . Hence, ∑      √
                           

                        
 

 √    

    
 √ , where   

             . 

Since we have   edges like blue one,   edges like green one,   edges like 

yellow one and   edges like red one, then by our argument, we have: 

               ( ∑   
   

√ 

 
  ∑   

   √
    

               
) 

                           
 √    

    
 √   

Therefore, we have the result.  

(ii)  It follows from Theorem 3.2.                                                                                ■ 
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Figure  13: Para-chain square cactus      . 

  

Theorem 3.6. Let   
  be the Ortho-chain graph of order   (see Figure 14). Then,  

 

i.  for every    , and    , if     , ne t we have: 

         
    (∑   

   √
     

                
)    √

     

     
  

and if       , we have: 

         
    (∑   

   √
     

                
)        √

     

     
 

 √     

    
  

ii. for every    ,        
   

    

√ 
 

     √ 

 
   

Proof. (i)  It is similar to the proof of Theorem 3.5. (ii) It follows from Theorem 3.2.          ■ 

  

  

 

Figure  14: Ortho-chain graph   
 .  

  

Theorem 3.7. Let    be the para-chain hexagonal graph of order   (see Figure 15). Then, 

i.  for every    , and    , we have: 

           

{
 

 



  ∑   
   √

     

                
               

  (∑   
   √

     

                
)  

 √     

    
                

 

ii.  for every    ,            √    
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Proof. (i)  It is similar to the proof of Theorem 3.4. (ii) It follows from Theorem 3.1.          ■ 

  

  

Figure  15: Para-chain hexagonal graph   . 

 

Theorem 3.8. Let    be the Meta-chain hexagonal of order   (see Figure 16). Then,   

i.  for every    , and    , if     , we have: 

            (∑   
   √

     

                
)    √

     

     
  

and if       , then we have: 

            (∑   
   √

     

                
)        √

     

     
 

 √     

    
  

ii. for every    ,           √    

   

Proof. (i) It is similar to the proof of Theorem 3.5. (ii) It follows from Theorem 3.1.          ■ 

  

Corollary 3.9. Meta-chain hexagonal  cactus graphs and para-chain hexagonal  cactus 

graphs of the same order, have the same atom-bond connectivity index. But they do not 

have the same Graovac-Ghorbani index.  

    

Figure  16: Meta-chain hexagonal graph   .  

3.2   POLYPHENYLENES 

 

Similar to the above definition of the spiro-chain       , we can define the graph        as 

the link of   cycles    in which the distance between the two contact vertices in the same 

cycle is  , see        in Figure 17.  
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Theorem 3.10. For the graph       , when    , we have            
      

 
 

  

√ 
  

 

Proof. There are     edges with endpoints of degree 3. Also there are        edges 

with endpoints of degree 3 and 2, and there are           edges with endpoints of 

degree 2. Therefore   

                  √
     

    
       √

     

    
            √

     

    
  

and we have the result.                                                                                                           ■ 

  

Theorem 3.11. For the graph       , we have:  

                                                  
    

 
 

      

√ 
  

Proof. There are      edges with endpoints of degree 3. Also there are    edges with 

endpoints of degree 3 and 2, and there are         edges with endpoints of degree 

2. Therefore, by the definition of the atom-bond connectivity index, we have the result.   ■ 

 

   

Figure  17: The graph       . 

3.3  TRIANGULANES 

 

We intend to derive the atom-bond connectivity of the triangulane    defined pictorially in 

[19]. We define    recursively in a manner that will be useful in our approach. First we 

define recursively an auxiliary family of triangulanes         . Let    be a triangle and 

denote one of its vertices by   . We define          as the circuit of the graphs 

         , and    and denote by    the vertex where    has been placed. The graphs 

      and    are shown in Figure 18. 

  

    

Figure  18: Graphs   ,    and   . 
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 Theorem 3.12. For the graph    (see    in Figure 19), we have:     

i.          
       √ 

 
 

         √ 

 
  

ii.             √
         

              
 

 √      

      
 

                       ∑   
        (√

      ∑     
                 

        ∑     
                  

) 

                       ∑   
          (

√        

        
)   

 

  

Figure  19: Graph   . 

 

Proof. (i)  Since creating such a graph is recursive, then there are    ∑     
         edges 

with endpoints of degree 4. Also there are       edges with endpoints of degree 4 and 

2, and there are         edges with endpoints of degree 2. Therefore, by the definition of 

the atom-bond connectivity index, and we have the result.   

(ii) Consider the graph    in Figure 20. First we consider the edge     . There are 

       vertices which are closer to    than   , and there are      vertices closer to    

than   . So, √
                           

                        
 √

         

              
. The edge     has the same 

attitude as the blue edge     . In total there are 6 edges with this value related to Graovac-

Ghorbani index. The number of vertices closer to vertex   is the same as the number of 

vertices closer to vertex    and are      vertices. So, √
                        

                     
 

√      

    
, and in total, we have 3 edges like this one. 

Now consider the edge     . There are                vertices which are 

closer to    than   , and there are        vertices closer to    than 
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  . So, √
                           

                        
 √

              

                   
. The edge     has the same 

attitude as the red edge     . In total there are 12 edges with this value related to Graovac-

Ghorbani index. The number of vertices closer to vertex   is the same as the number of 

vertices closer to vertex   , and in total, and are        

vertices. So, √
                        

                     
 

√    

      
, and in total, we have 6 edges like this one. 

By continuing this process in the  -th level (   ), we have:   

 √
     

               
             

     
              

           
 √

      ∑     
                 

        ∑     
                  

  

We have       edges like this one. The number of vertices closer to vertex    is the same as 

the number of vertices closer to its neighbour in horizontal edge with one endpoint    

(suppose  ), and are          vertices. So, √
                        

                     
 

√        

        
, and in 

total, we have         edges like this one. 

Finally, the number of vertices closer to vertex    is the same as the number of 

vertices closer to vertex  , the number of vertices closer to vertex    is the same as the 

number of vertices closer to vertex  , and the number of vertices closer to vertex   is the 

same as the number of vertices closer to vertex  , and are        vertices. So by the 

definition of the Graovac-Ghorbani index and our argument, we have 

           √
         

              
 

                       ∑   
        (√

      ∑     
                 

        ∑     
                  

) 

                       (∑   
          (

√        

        
))  

 √      

      
  

and therefore we have the result.                                                                                           ■ 

   

3.4  NANOSTAR DENDRIMERS 

 

We want to compute the atom-bond connectivity of the nanostar dendrimer    defined in 

[19]. First we define recursively an auxiliary family of rooted dendrimers         . We 

need a fixed graph   defined in Figure 21, we consider one of its endpoint to be the root of 

 . The graph    is defined in Figure 21, the leaf being its root. Now we define          

the bouquet of the following 3 graphs:          , and   with respect to their roots; 

the root of    is taken to be its unique leaf (see    and    in Figure 22). Finally, we define 

         as the bouquet of 3 copies of    with respect to their roots (   is shown in 

Figure 23, where the circles represent hexagons). 
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Figure  20: Graph   . 

 

 

 

    

Figure  21: Graphs   and   , respectively. 
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Figure  22: Graphs    and   , respectively. 

 

Theorem 3.13. For the dendrimer       we have:   

                              √   

  

Proof. There are    ∑     
      edges with endpoints of degree 3. Also there are   

  ∑     
      edges with endpoints of degree 3 and 2, and there are      ∑     

      edges 

with endpoints of degree 2. Therefore   

                ∑     
      √

     

    
      ∑     

      √
     

    
 

                                ∑     
      √

     

    
  

and we have the result.                                                                                                      ■ 

   

 
Figure  23: Nanostar    and      , respectively. 
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