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where d,, is the degree of vertex u in G. Let G be a connected graph
constructed from pairwise disjoint connected graphs G, ..., G, by
selecting a vertex of G,, a vertex of G,, and identifying these
two vertices. Then continue in this manner inductively. We say that
G is obtained by point-attaching from G4, ..., G, and that G;'s are the
primary subgraphs of G. In this paper, we give some upper bounds
on Graovac-Ghorbani and atom-bond connectivity indices for these
graphs. Additionally, we consider some particular cases of these
graphs that are of importance in chemistry and study their Graovac-
Ghorbani and atom-bond connectivity indices.
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1. INTRODUCTION

A molecular graph is a simple graph such that its vertices correspond to the atoms and the
edges to the bonds of a molecule. Let G = (V, E) be a finite, connected, simple graph. A
topological index of G is a real number related to G. It does not depend on the labeling or

*Corresponding author (Email: Nima.Ghanbari@uib.no ).
DOI: 10.22052/1IMC.2022.246079.1612



46 GHANBARI

pictorial representation of a graph. The Wiener index W (G) is the first distance based
topological index defined as W(G) = Xpmce d(u,v) = %Zu,vev@ d(u,v) with the

summation runs over all pairs of vertices of G [26]. The topological indices and graph
invariants based on distances between vertices of a graph are widely used for characterizing
molecular graphs, establishing relationships between structure and properties of
molecules, predicting biological activity of chemical compounds, and making their
chemical applications. The Wiener index is one of the most used topological indices with
high correlation with many physical and chemical indices of molecular compounds [26]. In
2010, Graovac et al. [14] introduced a new bond-additive structural invariant as a
quantitative refinement of the distance nonbalancedness and also a measure of peripherality
in graphs. They used the name Graovac-Ghorbani index for this invariant which is defined
as

ny, (uv,G)+ny, (uv,G)—-2
Ny (uv,G)ny, (uv,G)

)

ABCg(G) = ZquE(G) J

where n,(uv,G) is the number of vertices of G closer to u than to v, and
similarly, n,(uv, G) is the number of vertices closer to v than to u. Equidistant vertices
from u and v are not taken into account to compute n,(uv,G) and n,(uv,G). They
determined some bounds on this index. Graovac et al. in [15] computed that for some
nanostar dendrimers. Some other upper and lower bounds on the ABC;; index and also
characterizing the extremal graphs was studied by Das [4]. Ghorbani et al. in [13]
calculated the ABC,; of an infinite family of fullerenes. More results on this index can be
found in [5, 10, 20, 22, 23].

Graovac and Ghorbani defined ABCg; (G) [14] which motivated by the definition of
atom-bond connectivity index. Initially, the atom-bond connectivity index of a graph
G, ABC(G), was defined [9] as:

’du+dv—2
ABC(G) = \/EZquE(G) dydy

but later on, this index was very slightly redefined [8] by dropping the factor v2. We refer
the reader to [1] for a complete review of the atom-bond connectivity index.

Cactus graphs were first known as Husimi tree, they appeared in the scientific
literature more than sixty years ago in papers by Husimi and Riddell concerned with cluster
integrals in the theory of condensation in statistical mechanics [16, 18, 21]. We refer the
reader to [2, 3, 11, 12, 17, 24, 25] for some aspects of parameters of cactus graphs.

In this paper, we consider the Graovac-Ghorbani and atom-bond connectivity
indices of graphs from primary subgraphs. For convenience, the definition of these kind of
graphs will be given in the next section. In Section 2, we obtain some upper bounds for
Graovac-Ghorbani and atom-bond connectivity indices of graphs from primary
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subgraphs. In Section 3, we obtain the Graovac-Ghorbani and atom-bond connectivity
indices of families of graphs that are of importance in chemistry.

2. MAIN RESULTS

Let G be a connected graph constructed from pairwise disjoint connected graphs G, ..., G
as follows. Select a vertex of G,, a vertex of G,, and identify these two vertices. Then
continue in this manner inductively. Note that the graph G constructed in this way has a
tree-like structure, the G;'s being its building stones, see Figure 1.

U G ¢
N

Figure 1: A graph with subgraph units Gy, ..., G.

Usually say that G is obtained by point-attaching from G4, ..., G, and that G;'s are
the primary subgraphs of G. A particular case of this construction is the decomposition of a
connected graph into blocks (see [7]). We consider some particular cases of these graphs
and study their atom-bond connectivity index. As an example of point-attaching
graph, consider the graph K,,, and m copies of K,. By definition, the graph Q(m,n) is
obtained by identifying each vertex of K, with a vertex of a unique K,,. The graph Q(5,4)
is shown in Figure 2.
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XX

Figure 2: The graph Q(m,n) and Q(5,4), respectively.

Theorem 2.1. For the graph Q(m, n) (see Figure 2), and n > 2 we have:

i ABC(Q(m,n) = L am+n—3) + mG — 1)y2(n - 2)

2(m+n-2)

m+2n-5
+mn—1) |5 .
n“+mn—-m-3n+2

o) = BT ) [

Proof.
(1) There are m(mT_l) edges with endpoints of degree m +n — 2. Also there are
m(n — 1) edges with endpoints of degree m +n — 2 and n — 1, and there are
m(n — 1)(2 — 1) edges with endpoints of degree n — 1. Therefore

m(m-1) |[(m+n-2)+(m+n-2)-2
2 (m+n-2)(m+n-2)

ABC(Q(m,n)) =

(m+n-2)+(n—-1)-2

+m(n - 1)\/ (m+n-2)(n—1)

’( —-D+(n-1)-2
+ m(n - 1)(2— 1) W,

and we have the result.
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(i) First consider the edge u;u; in K,,. There are n vertices which are closer to u;
than w; (including u; itself), also there are n vertices closer to u; than u;, and

there are @ edges like u;u; in Q(m, n). Now consider the edge vw in the i-
th K,,. There is one vertex which is closer to v than w and that is v itself, and
visa versa. Finally, consider the edge ;v in the i-th K,,. There are n(m — 1) +
1 vertices which are closer to u; than v (including u;), also there is one vertex
closer to v than u; which is v, and there are m(n — 1) edges like u;v in
Q(m,n).

Therefore we have the result. n
2.1 UPPER BOUNDS

By the definition of the atom-bond connectivity and Graovac-Ghorbani indices, we have
the following easy result:

Proposition 2.2. Let G be a disconnected graph with components G; and G, Then
I. ABC(G) = ABC(G;) + ABC(G,).
“ ABCGG(G) = ABCGG(Gl) +ABCGG(G2)

Now we examine the effects on ABC(G) and ABCg;(G) when G is modified by
deleting an edge or vertex of G.

Theorem 2.3. Let G = (V,E) be a graph and e = uv € E which is not a pendant
edge. Also let d,, be the degree of vertex u in G, and n, be the number of vertices of G
closer to u than to v. Then,

. ABC(G — e) = ABC(G) — max {\/zzu—zﬁ/z(z,,—z}.

dy

ii.  ABCy(G —e) = ABC4e(G) — max {—VZZ“‘Z—””‘Z}

Ny

Proof. First we remove edge e and find ABC(G — e). For every integer a, b > 2, we have

\/a+(b_1)_2 > \/‘Hb_z. Now Obviously, by adding edge e to G — e and f—d“d"_z to
a(b-1) ab dydy
ABC(G — e), then ABC(G) is less than that or equal to it. So

ABC(G) < ABC(G —e) + /%

dyt+dy—2 [dy+d,—2
SABC(G—e)+maX{\/ o ,\/ . }
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dy
and therefore we have the result. The proof is similar to Part (i). [

= ABC(G — e) + max {—“23”_2,—‘2(1”_2},

By the same argument as the proof of Theorem 2.3, and deleting a vertex at the first
step, we have:

Theorem 2.4. Let G = (V,E) be a graph and v € V. Also let d,, be the degree of vertex u
in G. Then,

. ABC(G =) 2 ABC(G) — Tuvep max 202 2072,

dy
ii.  ABCy:(G —v) = ABCg(G) — Yyper Max {x/ZZu_Z’,/Znu_Z}.

ny

Here we study some bounds on the atom-bond connectivity and Graovac-Ghorbani
indices for links of graphs and circuits of graphs.

Tp—1 Yn—1 Tn Yn

Figure 3: Link of n graphs G;, G, ..., G,.

Theorem 2.5. Let G4, G,, ..., G, be a finite sequence of pairwise disjoint connected graphs
and let x;,y; € V(G;). Let G be the link of graphs {G;}*_, with respect to the vertices
{x;, v;}*_,, Figure 3, and suppose that G; # K;. Then,

Jdei+1_2 JZdyi—Z

)

dy; Axipq

i.  ABC(G) <Xk, ABC(G) + XX max

2nxi -2 Znyi—z
i, ABCg6(G) < ¥, ABC46(G) + X5 max \/ b ,J )

My; Mxiyq
Proof. We first remove the edge y; x,, see Figure 3. By Theorem 2.3, we have

ABC(G) < ABC(G — y1x,) + maxloze™% 2o =2y
dy, dx,
Let G’ be the link graph related to graphs {G;}*., with respect to the vertices
{x;, v:}*_,. Then by Proposition 2.2 we have,

ABC(G — y,x;) = ABC(G,) + ABC(G"),

and therefore,
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dy, -2
dy, }'
By continuing this process, we have the result. The proof of (ii) is similar to Part (i). [

ABC(G) < ABC(G,) + ABC(G") + maX{\/szz_z,\/z
y1

Figure 4: Circuit of n graphs G4, G,, ..., G,.

Theorem 2.6. Let G4, G,, ..., Gj, be a finite sequence of pairwise disjoint connected graphs
and let x; € V(G;). Let G be the circuit of graphs {G;}*_, with respect to the vertices
{x;}¥_, and obtained by identifying the vertex x; of the graph G; with the i-th vertex of the
cycle graph C,, (Figure 4) and suppose that G; # K;. Then,

. 2dy, 2 \[2dy,—2
. ABC(G)Smax{‘/ = N §+Z{'(=1ABC(GL')

Xn 1

\/de- -2 Jzax.—z
_ i+1 i
+ Yk max

J
A Axipq

2

ii. ABCg(G) < max {J Tt Y 2”"”‘2} + 3% ABCyg(Gy)

xn Nxq

Jan. -2 Jan.—Z
_ i+1 i
+ Yk max :

)
Mx; Mgy

Proof. First we remove the edge x,,x,, Figure 4. By Theorem 2.3, we have
=2 \[2dy,-2

ABC(G) < ABC(G — xp;) + maxpl—" Y202y
Xn X1
Now we remove edge x;x,. Then,
ABC(G) < ABC(G ~ {xtpx1, %)) + max( i Y2omty
Xn X1

+ max {\/2(1,52—2 \/del—z}
dy, ' dy,
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Let G’ be the graph related to circuit graph with {G;}*_, with respect to the vertices {x;}¥,
and removing the edge x,,x;. Then by Proposition 2.2 we have,

ABC(G — {x,x1,x,%,}) = ABC(G,) + ABC(G"),
and therefore,

ABC(G) < ABC(G,) + ABC(G") + max{\/zle_z ' \/chilxn—z

n
74, =2 [2dy =2
+max{\/ Xz ,*/ 1 }

X1 de

}

1

By continuing this process, we have the result. The proof of (ii) is similar to Part (i). [
2.2 SOME OTHER UPPER BOUNDS FOR THE GRAOVAC—GHORBAN |INDEX

In this subsection, we consider some special graphs from primary subgraphs and present
upper bounds for the Graovac-Ghorbani index of them. The following theorem is about the
link of graphs.

Theorem 2.7. Let G4, G,, ..., Gj, be a finite sequence of pairwise disjoint connected graphs
and let x;,y; € V(G;). Let G be the link of graphs {G;}*_, with respect to the vertices
{x;, v}, see Figure 3. Then,

ABC6(6) < (JE(G)| — (n — D) + XiLy ABCs6(Gy)
+ Yol J V(G)I-2

i V(GO Ty IV(GOI

Proof. Consider the graph G; (Figure 3) and let n,, (uv, G;) be the number of vertices of G;
closer to u than v in G;, Also let n, (uv, G;) be the number of vertices of G closer to u than
v in G. By the definition of Graovac-Ghorbani index, we have:

Ny (uv,G)+ny(uv,G)-2

ABC6(G) = Zuver(o) \/ T (0,6 1y (U0,G)

_n Z Ny (uv,Gy)+ny(uv,G;)—2
T 4i=1 LuveE(Gy) Ny, (uv,Gny (uv,G;)

4 yn-1 y - Ny, (ViXi+1,6) Ny (ViXip1,6)—2
= iXi+1€
i=1 &yixis1€E(G) Ny, (ViXit1,0Nyx; ; ViXit1,6)

Ny (uv,Gy)+ny(uv,G;)—2
1y (U, G )My (U,Gy)

= Z?:l ZuveE(Gi),d(u,xi)<d(v,xi),d(u,yi)<d(v,yi) J

Ny (uv,Gy)+ny(uv,G;)—2

Ty (u0,G )1 (uv,G;)

+ Z?=1 ZuveE(Gi),d(u,xi)<d(v,xi),d(v,yi)<d(u,yi) J



On the Graovac—Ghorbani and Atom—bond Connectivity Indices of Graphs 53

Ny (uv,Gy)+ny(uv,G;)—2
Ny (Uv,G)Ny (uv,G;)

+ Z?:l ZuveE(Gi),d(u,xi)<d(v,xi),d(u,yi)=d(v.yi) \/

Ny (uv,G)+ny(uv,G;)—2
Ny (uv,G)ny (uv,Gy)

+ Z?:l ZuveE(Gi),d(u,xl-)=d(v,xi),d(u.yi)<d(1’,yl') \/

Ny (uv,Gy)+ny(uv,G;)—2
Ny (uv,G)Ny (uv,G;)

+ Z?:l ZuveE(Gi),d(u,xl-)=d(v,xi),d(u,yi)=d(U.yi) \/

Ny, (ViXit1, G+ (ViXip1,6)—2

Ny, (ViXit1,0Nyx;  ViXit1,6)

+ Z?=_11 ZJ’ixiH €E(G)

Ny (uv,G))+V(G)-V(Gy)+ny (uv,G;)—2
(M (uv, G +V(G) -V (G )Ny (uv,Gy)

= Z?=1 ZuveE(Gi),d(u,xi)<d(v,xi),d(u,yi)<d(v,yi) \/

Maas (U0,G i)+ Ty |V (Ge) [+ 10 (W0, G0) + X7 4.4 [V (Ge) | =2
(s (W0,6)+ Tz 1V (G)) (s (w0,G1) =iz 1V (G)D)

+ Xie1 Duver(60),d(wx)<d(vx)dw.y)<d(wy;) \/

Ny (U0,G)+3E_ 1 |V (Ge)|+71 (uv,G)—2
(s (U0,G)+X IV (Ge)DNpr (uv,Gy)

N (UD,G)) +1p (UV,G)+II ;1 [V(Ge)|—2
Nr (U,G)) (yr (UV,G)+E1 14 IV (G

+ Z?=1 ZquE(Gi),d(u,xi)<d(v,xi),d(u,yi)=d(v,yi) J

+ Zln=1 ZuveE(Gi),d(u,xi)=d(v,xi),d(u,yi)<d(v,yi) J

Ny (Uuv,Gi)+ny (uv,G;)—2
N (uv,G) Ny (uv,G;)

+ Z?:l ZuveE(Gi),d(u,xl-)=d(v,xi),d(u.yi)=d(v.yi) \/

4yl \/ziﬂ|V(Gt)|+2?=i+1|V(Gt)|—z
LN S IVGOIE i V@]

: Lo +c+b—2 +b—2
Since for every non negative integers a, b and c, J“ c \/a

(a+c)b ab +1

Ny (uv,Gi) +ny (uv,G;) -2
Ny (uv,Gi)nyr (uv,G;)

ABCGG (G) < 2?:1 ZuvEE(Gi),d(u,xi)<d(v,xi),d(u,yi)<d(v,yi) \/ +1

Ny (uv,Gy))+ny (uv,G;)—2
Ny (Uv,G)) Ny (uv,G;)

+ Z?=1 ZuveE(Gi),d(u,xi)<d(v,xi),d(v,yi)<d(u,yi) +1

Ny (uv,G) Ny (Uv,G;)

Ny (uv,Gi)+ny (Uv,G;)—2
Ny (uv,G) Ny (Uv,G;)

+ Z?:l ZuveE(Gi),d(u,xi)=d(v,xi),d(u,yi)<d(17,yi) +1

Ny (uv,Gi)+ny (uv,Gi)—2
Ny (uv,G)ny (uv,G;)

+1

Ny (uv,Gi)+ny (Uv,G;)—2
+ Z?:l ZuveE(Gi),d(u,xi)<d(v,xi),d(u,yi)=d(17,yi) \/ +1
+ Z?=1 ZuveE(Gi),d(u,xi)=d(v,xi),d(u,yi)=d(17.yi) J

+ ym-1 \/ziﬂ V(GOI+ T8 i1 IV (GO -2
LA B VG B 4 V(G
= (E(@)| = (n—1)) + XLy ABC6(Gy)
n-1 |Ze=1 VGDI+ Iiiyy V(G2
* i \/ t=1 VGOl T iq VGO
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and therefore we have the result. m

By the same argument similar to the proof of the Theorem 2.7, we have the
following theorem which is about the chain of graphs:

Theorem 2.8. Let G4, G,, ..., G, be a finite sequence of pairwise disjoint connected graphs
and let x;,y; € V(G;). Let C(Gy,...,Gy) be the chain of graphs {G;}}-, with respect to the
vertices {x;,y;}*, which obtained by identifying the vertex y; with the vertex x;,, for
i=1,2,..,n—1(Figure5). Then,

n , 1 [ Iv@I-2
ABCoo(C(Gr, ..., 6)) < |E@)| + ity ABCa(G) + X5 [5maan izt

T

T To 3 Tn— In
Y1 Y2 Y3 n— n
Figure 5: Chain of n graphs G4, G,, ..., G,.

With similar argument to the proof of the Theorem 2.7, we have the following
theorem which is about the bouquet of graphs:

Theorem 2.9. Let G4, G,, ..., G, be a finite sequence of pairwise disjoint connected graphs
and let x; € V(G;). Let B(G4, ..., G,) be the bouquet of graphs {G;}/=, with respect to the
vertices {x;}j=, and obtained by identifying the vertex x; of the graph G; with x (see Figure
6). Then,

n ] n-1 . [V(G)|-2
ABCo(B(Gy,..., 6)) < IE(E)| + Bl ABCao(6) + i[5 —s,

Figure 6: Bouquet of n graphs G4, G5, ...,G, and x; = x, = -+ = x,, = X.
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Now we consider the circuit of graphs.

Theorem 2.10. Let G4, G,, ..., G, be a finite sequence of pairwise disjoint connected graphs
and let x; € V(G;). Let G be the circuit of graphs {G;}}=, with respect to the vertices
{x;}i=, and obtained by identifying the vertex x; of the graph G; with the i-th vertex of
the cycle graph C,,, Figure 4. Then,

_ n N G n-1 [_IV@I-2
ABCoo(6) < (E(OI =) + Liy ABCee (G + e ivionl T 2= [ Wiepv @l

Proof. First consider the edge x;x,. There are two cases, n is even or odd. If n = 2t for
some t € N, then, the vertices in the graphs G4, G,, G5, ..., G, are closer to x; than x,,, and
the rest are closer to x,, than x;. So,

Ny (X120, G) e (X1X0,G)=2 [T IV(GHI+ZE, [V(Geai)| -2
Ny (%120, G) Ny, (X1 %0,G) Y VG ZE, IV(Geyd)

_ [V(G)|-2
T VG ZE, IV(Gesd)]

/ V(G)|-2
<
V(GDIIV (G2

V(e)I-2

VGV (Gl
By the same argument, for every x;x;,1, 1 <i <n — 1, we have:

My, (XiXi41,G) ;| (XiXip1,G)—2 < V(G)|-2
My, (XiXi41,G)Nx;; (XiXi11,G) VGV (Gia)I

If n = 2t — 1 for some t € N, then, the vertices in the graphs G4, G,, G5, ..., G;_, are
closer to x, than x,,, and the vertices in the graphs G;,1, G¢42, Gt43, ..., Gy, are closer to x,,
than x;. The vertices in the graph G; have the same distance to x; and x,,. So
\/nxl (@120, ) ey (11X, G) =2 _ sz;i IV(G)I+ZEZE IV (Gei)| -2
Ty (610, Gy, (X1207,G) I IVGDIZIZ IV (G

_ V(6)I-IV (G| -2
TiZ1 V@I EIZT IV Gerd)

Therefore,

My (1 O iy 1 =2 J|V<G)|—|V(Gt)|—z
Ny (X1 X0, G) Ny, (X1 %0, G) [V(GIIV (Gat-1)|

_ [V@®I-IV(GD)I-2
[V(GDIIV(Gn)I

/ V(G)|-2
< V(GDIV(G)|

By the same argument, for every x;x;,,, 1 < i <n —1, we have:
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My, (XiXi41,G) 10y, | (XiXip1,G)—2 < V(G)|-2
N, (XiXi41,6) My, (XiX141,6) V(GDIIV (Gl

Now by the definition of Graovac-Ghorbani index and similar argument like the proof of
the Theorem 2.7, we have the result. [

3. CHEMICAL APPLICATIONS

In this section, we apply our previous results in order to obtain the atom-bond connectivity
and Graovac-Ghorbani indices of families of graphs that are of importance in chemistry.

3.1 SPIRO-CHAINS

Spiro-chains are defined in [6]. Making use of the concept of chain of graphs, a spiro-chain
can be defined as a chain of cycles. We denote by S, , . the chain of k cycles C, in which
the distance between two consecutive contact vertices is h, see S¢ , g In Figure 7.

Figure 7: The graph S¢, s.
Theorem 3.1. For the graph S, ,, ,, (h = 2), we have ABC(Sqnk) = 3—;.

Proof. There are 4(k — 1) edges with endpoints of degree 2 and 4. Also there are gk —
4(k — 1) edges with endpoints of degree 2. Therefore

2+4-2 2+2-2
ABC(Sqni) = 4(k = 1) |55+ (gk — 4(k = D) |5,
and we have the result. .
Theorem 3.2. For the graph S 4 ., we have ABC(Sg 1) = qk:/g“ + ("‘:)‘/g_

Proof. There are k — 2 edges with endpoints of degree 4. Also there are 2k edges with
endpoints of degree 4 and 2, and there are gk — 3k + 2 edges with endpoints of degree
2. Therefore by the definition of the atom-bond connectivity, we have the result. ]
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Theorem 3.3. Let T, be the chain triangular graph of order n. Then,

foreveryn > 2,and k > 1, if n = 2k, we have:

J— 2i-2 4k—2i / 4k—2
ABCo6(Tn) = 2 Xz (Jzt—1 t \/4k—2i+1 + (4k—2i+1)(2i—1)>'

and if n = 2k + 1, thenwe have:

ek 2i-2 42042 4k
ABCo6(Tn) = 2 Xz (Jzt 1 \/4k s T (4k—2i+3)(2i—1)>
/ 2k 2k
+2 2k+1 + 2k+1"

foreveryn > 2, ABC(T,) = 2'\1/;2 n ("—j)\/g.

U2k—i+1

VAVASANVAVANANPAVAL

(1)

Wop_it1 V2k—i+1

(2) (i) (k) (k+1) (2k-i4+1) (2k-1)  (2k)

Figure 8: Chain triangular cactus Ty.

Proof. (i) We consider the following cases:

Case 1. Suppose that n is even, and n = 2k for some k € N. Consider the T, as
shown in Figure 8. One can easily check that whatever happens to computation of
Graovac-Ghorbani index related to the edge u;v; in the (i)-th triangle in Ty, is the
same as computation of Graovac-Ghorbani index related to the edge
Usk—i+1V2ak—i+1 IN the (2k — i+ 1)-th triangle. The same goes for w;v; and
Wok—i+1V2k—i+1, and also for w;u; and w11 Usk—i4+1. SO for computing Graovac-

Ny UV, T2g)+ 1y (U, T2) -2

Ghorbani index, it suffices to compute the J for every

Ny (uv,T2) Ny (U, T2k)

uv € E(T,) in the first k triangles and then multiple that by 2. So from now, we
only consider the first k triangles.

Consider the blue edge u;v; in the (i)-th triangle. There are 2(i—1) + 1

vertices which are closer to v; than u;, and there is one vertex closer to u; than

Ny (Ui V3, T2p) 1y, (U0 T2k) =2 2i-2

v;. So,\/ L L = J .

My, (Wi v, T2 k)M, (W03, T2k) 2i-1
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Now consider the green edge u;w; in the (i)-th triangle. There are 2(2k —
i) + 1 vertices which are closer to w; than u;, and there is one vertex closer to u;

than w:. So Ny (Wwi o) +nw; Ww Top) =2 | 4k-2i
Wi 99, Ny, (UWi T2 i) w; (Wiwi, T2k) N 4k-2i+1
Finally, consider the red edge v;w; in the (i)-th triangle. There are 2(2k —

i) + 1 vertices which are closer to w; than v;, and there are 2(i — 1) + 1 vertices

Ny, WiWi T2) 1w, (Viw, T2x)—2 4k—2
closer to v; than w;. So, = : —
(4k—-2i+1)(2i—1)

Ny, WiWi T2)w; (Viw,T2k)
Since we have k edges like blue one, k edges like green one and k edges
like red one, by our argument, we have:

_ k 2i-2 4k—-2i 4k-2
ABCGG(TZR) - 22i=1 <\/2i—1 + \/4k—2i+1 + \/(4k—2i+1)(2i—1)>'

Case 2. Suppose that n is odd and n = 2k + 1 for some k € N. Now consider the
Tok+1 @S shown in Figure 9. One can easily check that whatever happens to
computation of Graovac-Ghorbani index related to the edge w;v; in the (i)-th
triangle in Ty, is the same as computation of Graovac-Ghorbani index related to
the edge Usp_it2Vak—iv2 IN the (2k — i + 2)-th triangle. The same goes for w;v;
and Wop_ijy2Vok—iv2, and also for wyu; and wyj_j1oUsk—iy2. SO for computing

Ny (UV,T41) + Ny (UV, Tog41)—2 f
Ny (UV,T24+1) Ny (UV, T2k +1)

every edge uv € E(T,j,1) in the first k triangles and then multiple that by 2 and
: Ny (U, T2k+1) +1p UV, T2 41)—2 _
add it to Y,pea \/ et Tar Do Tares) where A = {ab,bc,ac}. So from
now, we only consider the first k triangles and the middle one.
Consider the blue edge u;v; in the (i)-th triangle. There are 2(i — 1) +1
vertices which are closer to v; than u;, and there is one vertex closer to u; than

v S0 \/nui(uivi,TzkH)+nvi(uivi,T2k+1)—2 :\/E.
' ’ My, WiV, T2 k41N, (U3 T2ge41) 2i-1
Now consider the green edge u;w; in the (i)-th triangle. There are 4k —
2i + 3 vertices which are closer to w; than u;, and there is one vertex closer to u;

Ny (UWi Tog41) 1w, (UiWi T2g1)—2 4k-2i+2
than w;. So, = —,
Ny, (Wi T2+ 1) w; UiWT2k41) 4k—2i+3
Next consider the red edge v;w; in the (i)-th triangle. There are 2(2k — i +
1) + 1 vertices which are closer to w; than v;, and there are 2(i — 1) + 1 vertices
Ny WiWi Tor41) 0w WiWi Top41) =2 4k
N, Wi Tops ) iWiTake1) A (4k—2i+3)(2i-1)°
Finally, consider the middle triangle. For the edge ab, there are 2k + 1
vertices which are closer to b than a, and there is one vertex closer to a than b. Also
for the edge ac, there are 2k + 1 vertices which are closer to ¢ than a, and there is

Graovac-Ghorbani index, it suffices to compute \/ or

closer to v; than w;. So , J



On the Graovac—Ghorbani and Atom—bond Connectivity Indices of Graphs 59

one vertex closer to a than ¢ and for the edge bc, there are 2k + 1 vertices which
are closer to b than ¢, and there are 2k + 1 vertices closer to ¢ than

b. Hence, Yupes \/"“““”Tz"“)+”"(“”’T2"“)_2=2 2k IR \here A =

Ny UV, Toka )Ny (U, T2k e1) 2k+1  2k+1’'
{ab, bc, ac}.
Since we have k edges like blue one, k edges like green one and k edges
like red one, by our argument, we have:

R 2i-2 4242 4k
ABCo6(Tzk+1) = 2 iy (\/Zi 1 \/4k s T (4k—2i+3)(2i—1)>

/ 2k 2Vk
+2 2k+1 T 2k+1°

Therefore, we have the result.

(ii) It follows from Theorem 3.2. [

U2k—i+2

/_\.L\./_..AAA..AAA

Wak—it+2  Uzk—it2

(1) (k+1) 1 (k+2) (2 —i+2) (2k)  (2k+1)

Figure 9: Chain triangular cactus T, .

Theorem 3.4. .Let Q,, be the para-chain square cactus graph of order n. Then,

i. foreveryn > 1,and k > 1, we have:

k 6k—1 , _
8 Xi=1 \’(6k—3i+2)(3i—1) if n =2k,
K f 6k+2 4V6k+2 , _
8( =1 (6k—3i+5)(3i—1)) T if n=2k+1.

. forevery n > 2, ABC(Q,)) = 2nv/2.

ABCg6(Qn) =

Uy U2k —i+1

Uk —iq1 Eoh—it1

Wak—it1

(1) 2) (i) (k) (k+1) (2k-i+1) (Zk-1)  (2k)
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Figure 10: Para-chain square cactus Q..

Proof. (i) We consider the following cases:

Case 1. Suppose that n is even and n = 2k for some k € N. Now consider the Q,
as shown in Figure 10. One can easily check that whatever happens to computation
of Graovac-Ghorbani index related to the edge u;v; in the (i)-th rhombus in Q,, is
the same as computation of Graovac-Ghorbani index related to the edge
Upk—i+1Vak—i+1 IN the (2k — i+ 1)-th rhombus. The same goes for w;v; and
Wok—i+1V2k—i+1, TOr wix; and Wyp_jp1X2k-i+1, and also for x;u; and
Xok—iv1Uzk—i+1- S0 for computing Graovac-Ghorbani index, it suffices to compute
the Jnu(uv,ozk)+nv<uv,azk)—2

for ever €EE in the fir rhom nd then
Ny (Uv,Q 21 )M, (UV,Q21) or every uv (sz) the first k rhombus and the

multiple that by 2. So from now, we only consider the first k rhombus.
Consider the red edge u;v; in the (i)-th rhombus. There are 3k + 3(k —
i) + 2 vertices which are closer to v; than u;, and there are 3i — 1 vertices closer to
w than v-. So Jnui(uivi,sz)+nvi(uivi,sz)—Z _ J 6k—1 .
' ' ’ Ny, (UiV3,Q21) M, (Ui V,Q2k) (6k—-3i+2)(3i-1)
One can easily check that the edges w;v;, w;x; and x;u; have the same
attitude as u;v;. Since we have k edges like blue one, k edges like green one, k

edges like yellow one and k edges like red one, then by our argument, we

_ k 6k—1
nave ABCo(Qa) = 2(43ks [t —),

Case 2. Suppose that n is odd and n = 2k + 1 for some k € N. Now consider the
Q2r+1 as shown in Figure 11. One can easily check that whatever happens to
computation of Graovac-Ghorbani index related to the edge w;v; in the (i)-th
rhombus in Q,x44, IS the same as computation of Graovac-Ghorbani index related
to the edge uyk_;42V2k—is2 IN the (2k — i+ 2)-th rhombus. The same goes for
w;v; and Wy _iroVok—iv2, TOr wix; and wop_;12X2k—i+2, and also for x;u; and
Xok—iv2Uzk—i+2- S0 for computing Graovac-Ghorbani index, it suffices to compute

the J””(“U’QZ"“)+""(u”’Q2"“)_2 for every uv € E(Q,44) in the first k rhombus and

Ny (UY,Q21+1)My (UV,Q21+1)

then multiple that by 2 and add it to Y .4 \/nu(uv'Qz"“)+""(MU'Q2"“)_2, where

Ny (UV,Q2k+1) My (UV,Q2k+1)
A = {ab, bc, cd, da}. So from now, we only consider the first k + 1 rhombus.
Consider the red edge u;v; in the (i)-th rhombus. There are 3(k + 1) +
3(k — i) + 2 vertices which are closer to v; than u;, and there are 3i — 1 vertices
Ny, (U0, Q2 +1) 1w, (U0, Q2K 41)—2 6k+2
closer to u; than v;. So, = : —.
(6k—3i+5)(3i—1)

Ny, (W03, Q2k+1)Mw; (Ui V3, Q2k+1)
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One can easily check that the edges w;v;, w;x; and x;u; have the same
attitude as u; v;.

Now consider the middle rhombus. For the edge ab, there are 3k + 2
vertices which are closer to b than a, and there are 3k + 2 vertices closer to a than
b. the edges bc, c¢cd and da have the same attitude as

Ny (UV,Q2k+1)+ My (UV,Q2k+1)—2 _ 4V6k+2
ab. Hence, ZuveA\/ My (U,Q2k+ )My (UV,Q2k41)  3k+2 where

A ={ab, bc,cd,da}.
Since we have k edges like blue one, k edges like green one, k edges like
yellow one and k edges like red one, then by our argument, we have:

_ k , 6k+2 4V 6k+2
ABCGG(QZR+1) =2 <4Zi=1 (6k—3i+5)(3i—1)> + 3k+2

Therefore, we have the result.

(ii) It follows from Theorem 3.1. [

u;

a U2k —i+2

w; c Wak—i+2

(2) (i) (k) (k+1)  (k+2) (2k-i+2) (2k) (2k+1)

Figure 11: Para-chain square cactus Q,j.1-

Theorem 3.5. Let 0,, be the para-chain square cactus graph of order n. Then,

i foreveryn > 2,and k > 1, if n = 2k, we have:

’ 6k—1
ABC;(0,) = 2k\2 + 4( k m);

and if n = 2k + 1, thenwe have:

_ 2V6k+2 K , 6k+2
ABC6(0n) = (2k + V2 + sz T 4( i=1 (6k—3i+5)(3i—1))'

ii forevery n > 2, ABC(0,) = 212 4 (o6

V2 4
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€T Ui
| U2k —i+1 Wak—i+1
wy Uj |
Uk —i41 Tok—it1
1 (2 (i) k) (k+1) (2k-i+1) (2k-1)  (2k)

Figure 12: Para-chain square cactus O,.

Proof. (i)We consider the following cases:

Case 1. Suppose that n is even and n = 2k for some k € N. Now consider the O,
as shown in Figure 12. One can easily check that whatever happens to computation
of Graovac-Ghorbani index related to the edge w;v; in the (i)-th square in Oy, is
the same as computation of Graovac-Ghorbani index related to the edge
Upk—i+1V2k—i+1 N the (2k —i+ 1)-th square. The same goes for w;v; and
Wok—i+1Vak—i+1, TOr wix; and Wyp_jp1X2k—i+1, and also for x;u; and
Xok—iv1Uzk—i+1- S0 for computing Graovac-Ghorbani index, it suffices to compute
the \/nu(uv,ozk)+n,,(uv,02k)—2

Y S for every uv € E(0,) in the first k squares and then

multiple that by 2. So from now, we only consider the first k£ squares.

Consider the yellow edge w;v; in the (i)-th square. There are 3(2k) — 1
vertices which are closer to v; than u;, and there are 2 vertices closer to u; than v;
which is x;. So, Jnui(uivi:ozk)+nvi(uivi:ozk)_z _V2

Ny (U3, 020Ny, (UV3,02k) 2
happens to the edge x;w;.
Now consider the blue edge u;x; in the (i)-th square. There are 3i — 1
vertices which are closer to x; than u;, and there are 3k + 3(k — i) + 2 vertices
Ny, (Ux3,02) Ny (U X1,025) 2 6k—1
closer to u; than x;. SO,\/ e —— =\/ — —,
Ty (WX, 0200 N, (UX1,02k) (6k—3i+2)(3i-1)
same argument, the same happens to the edge v;w;.

Since we have k edges like blue one, k edges like green one, k edges like

yellow one and k edges like red one, then by our argument, we have:

_ Kk V2 k fL
ABC6(0a1) = 2 (2 Li=1 > T 2 Xi=1 (6k—3i+2)(3i—1)>'

Case 2. Suppose that n is odd and n = 2k + 1 for some k € N. Now consider the
O,r+1 as shown in Figure 13. One can easily check that whatever happens to
computation of Graovac-Ghorbani index related to the edge w;v; in the (i)-th
square in 0,4, IS the same as computation of Graovac-Ghorbani index related to

. By the same argument, the same

By the
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the edge uyk_iy2Vok_is2 INthe (2k — i + 2)-th square. The same goes for w;v; and
Wok—i+2Vak—i+2, TOr wix; and Wyp_ii2Xok—i+2, and also for x;u; and
Xok—iv2Uzk—i+2- S0 for computing Graovac-Ghorbani index, it suffices to compute

for every uv € E(0O,y4) in the first k squares and

the Ny (UV,02k+1)+1p(UV, 02k +1)—2
Ny (UV,02k+1)Mp (UV,02+1)

then multiple that by 2 and add it to ¥, ea \/nu(”"‘02"“)+n"(w'02"“)_2, where

Ny (UV,02+1) My (UV,02k+1)

A = {ab, bc, cd, da}. So from now, we only consider the first k + 1 squares.

Consider the yellow edge u;v; in the (i)-th square. There are 3(2k + 1) — 1
vertices which are closer to v; than u;, and there are 2 vertices closer to u; than
v;. So, \/nu"(uivi'oz"”)+n”"(uivi'02k“)_2 — 2 By the same argument, the same

My WiV, 025 +1)Mw; UiV, 02k +1) 2

happens to the edge x;w;.

Now consider the blue edge u;x; in the (i)-th square. There are 3i — 1
vertices which are closer to x; than u;, and there are 3(k+ 1)+ 3(k—1i) +2

Ny (WX, 02k 41) +10; (WiX, 02k 41) =2

Ty (Ui X3, 0204+ 1) (UiX (021 41)

, 6k+2
TS TeTE By the same argument, the same happens to the edge v;w;.

Now consider the middle square. For the edge ab, there are 3k + 2 vertices
which are closer to b than a, and there are 3k + 2 vertices closer to a than b. The
edge cd has the same attitude as ab. But for the edge ad, there are 3(2k +1) — 1
vertices which are closer to d than a, and there are 2 vertices closer to a than d, and

vertices closer to wu; than x;. So, \/

the edge bc has the same attitude as
Ny (UV,02141)+Np(UV,02541)—2 _ 2V6k+2 _
ad. Hence, ZweA\/ oy = 3kez ++2, where A=

{ab, bc, cd, da}.
Since we have k edges like blue one, k edges like green one, k edges like
yellow one and k edges like red one, then by our argument, we have:

_ ko V2 k /6"—*2
ABCGG(02k+1) =2 (2 Zi=1 2 + 221=1 (6k—3i+5)(3i—1))

2V 6k+2
= + /2.

Therefore, we have the result.
(i1) It follows from Theorem 3.2. ]



64 GHANBARI

L Ui a b U2h—i+2  Tk—i+2
‘ d c ‘
w; o ‘ U2k —i42 Wag 12
(1) (2) (i) (k) (k+1) (k+2) (2k-i4+-2) (2k)  (2k+1)

Figure 13: Para-chain square cactus O,y 1.
Theorem 3.6. Let 0/ be the Ortho-chain graph of order n (see Figure 14). Then,

I. foreveryn > 2,and k > 1, if n = 2k, thenwe have:

AN k 10k—1 10k—-1
ABCg(On) = 4( i=1 \/(10k—5i+3)(5i—2)> + 8k\/30k—6'

and if n = 2k + 1, we have:

hy — k 10k+4 10k+4 2V10k+4
ABCoq(On) = 4( i=1 J(lok—5i+8)(5i—z)) T @Bk + ) o0 T kes

ii.  foreveryn >2, ABC(O}) = 5717“;2 + (n_i)‘/g.

Proof. (i) It is similar to the proof of Theorem 3.5. (ii) It follows from Theorem 3.2. [

i

Figure 14: Ortho-chain graph O}

Theorem 3.7. Let L,, be the para-chain hexagonal graph of order n (see Figure 15). Then,
I. foreveryn > 1,and k > 1, we have:

12 Zi-‘;l\/ 1ok=1 if n=2k

(10k—5i+3)(5i—2)

ABCg6(Ly) =
12( {le\/ 10k+4 )+ 6V10k+4 if n=2k+1.

(10k—5i+8)(5i—2) 5k+3
. forevery n > 2, ABC(L,) = 3nV/2.



On the Graovac—Ghorbani and Atom—bond Connectivity Indices of Graphs 65

Proof. (i) It is similar to the proof of Theorem 3.4. (ii) It follows from Theorem 3.1. ]

Figure 15: Para-chain hexagonal graph L,,.

Theorem 3.8. Let M,, be the Meta-chain hexagonal of order n (see Figure 16). Then,
. foreveryn > 2,and k > 1, if n = 2k, we have:

_ k 10k—1 10k—-1
ABCge(My) = 8( =1 \/(10k—5i+3)(5i—2)> T 4k\l30k—6'

and if n = 2k + 1, then we have:

_ k 10k+4 10k+4 4V10k+4
ABCGG(Mn) - 8( i=1 \/(10k—5i+8)(5i—2)> T (Zk + 2) 30k+9 + 5k+3

. forevery n > 2, ABC(M,,) = 3nv2.

Proof. (i) It is similar to the proof of Theorem 3.5. (ii) It follows from Theorem 3.1. ]

Corollary 3.9. Meta-chain hexagonal cactus graphs and para-chain hexagonal cactus
graphs of the same order, have the same atom-bond connectivity index. But they do not
have the same Graovac-Ghorbani index.

o 0

Figure 16: Meta-chain hexagonal graph M,,.

3.2 POLYPHENYLENES

Similar to the above definition of the spiro-chain S, ., we can define the graph L, as
the link of k cycles C, in which the distance between the two contact vertices in the same
cycleis h, see Lg 5 4 in Figure 17.
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Theorem 3.10. For the graph Lg p, x, when h > 2, we have ABC(Lgpx) = 2(" L)

+E
Proof. There are k — 1 edges with endpoints of degree 3. Also there are 4(k — 1) edges
with endpoints of degree 3 and 2, and there are gk — 4(k — 1) edges with endpoints of
degree 2. Therefore

3+3-2

3+2-2 2+2 2

2(2)
and we have the result. n

ABC(Lgpy) = (k—1) +4(k — + (gk —4(k — 1))

Theorem 3.11. For the graph Lg 1 5, we have'
k- k+2
ABC(Lg1y) = 22414 =
Proof. There are 2k — 3 edges with endpoints of degree 3. Also there are 2k edges with

endpoints of degree 3 and 2, and there are gk — 3k + 2 edges with endpoints of degree
2. Therefore, by the definition of the atom-bond connectivity index, we have the result. =

Figure 17: The graph L ; 4.
3.3 TRIANGULANES

We intend to derive the atom-bond connectivity of the triangulane T;, defined pictorially in
[19]. We define T} recursively in a manner that will be useful in our approach. First we
define recursively an auxiliary family of triangulanes G, (k > 1). Let G, be a triangle and
denote one of its vertices by y;. We define G, (k = 2) as the circuit of the graphs
Gr-1,Gr—1, and K; and denote by y, the vertex where K; has been placed. The graphs
G, G, and G5 are shown in Figure 18.

;;'t‘l
G

Figure 18: Graphs G4, G, and G.
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Theorem 3.12. For the graph T} (see T; in Figure 19), we have:

k-1 ky_
L ABO(T) = 2, CEIO%

.. 2N+242n_g 3V2n+2_g4
I. ABCsq(T,) = 6 ’(2n+2—1)(2n—1) t
2n+2+(2%;% Zn—t)+2n—i+1_4_ )

n i
+ Zi=2 3(2 ) <\/(2n+2_1+2£;% 2n-ty(gn-iti_q)

A=
+ 0L 30 (Ba).

Figure 19: Graph Ts.

Proof. (i) Since creating such a graph is recursive, then there are 3 + 3 Y21 3(2™) edges
with endpoints of degree 4. Also there are 3(2%) edges with endpoints of degree 4 and
2, and there are 3(2%~1) edges with endpoints of degree 2. Therefore, by the definition of
the atom-bond connectivity index, and we have the result.

(ii) Consider the graph T, in Figure 20. First we consider the edge x,x;. There are
2™*2 — 1 vertices which are closer to x, than x;, and there are 2" — 1 vertices closer to x;
than x,. So, \/n";:‘g:;";:;jggﬁ:;2 = J (;:i:ir;:). The edge ax, has the same
attitude as the blue edge x,x,. In total there are 6 edges with this value related to Graovac-
Ghorbani index. The number of vertices closer to vertex a is the same as the number of

Nng(axy,Tn)+nx, (ax1,Th)—2

Ng (axern)nxl (ax1,Tn)

vertices closer to vertex x; and are 2™ —1 vertices. So, \/

2n+1l_4
2n—-1

, and in total, we have 3 edges like this one.

Now consider the edge x;x,. There are 2(2™*! — 1) + 2™ + 1 vertices which are
closer to x; than x,, and there are 2™ !—1 vertices closer to x, than
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Ny, (X0X1,Tn)+Nx, (X0X1,Tn)—2 2n+2 4 ongon—1_4
x;. SO, J x0 (Y01 Tn) ¥ty (X021, Tn) —\/ The edge bx; has the same

Mo (FoX1, Ty (KoX1,T) A (2MF2427—1)(2""1-1)’
attitude as the red edge x;x,. In total there are 12 edges with this value related to Graovac-
Ghorbani index. The number of vertices closer to vertex b is the same as the number of
vertices closer to wvertex x,, and in total, and are 2"1-1

np(bx1,Tp)+ny, (bx1,Tn)—2 V2n—4 . . .
b1 Tn) 41ty (B2, Tn) 22 —— and in total, we have 6 edges like this one.
np(bx1,Tp)Nx, (bx1,Tn) 2n-1-1

vertices. So, \/

By continuing this process in the i-th level (i > 1), we have:
\/nxi_l(xi—lxiJTn)"'nxi(xi—lxi'Tn)_z _ \/ 2n+24(Riz2 on-t)pon-itl_y
Ty (i1 X0, Tn) Mg, (%=1 X3, Tn) (2n+2-14%173 2n- ) (2n-i+ -1’
We have 3(2%) edges like this one. The number of vertices closer to vertex x; is the same as
the number of vertices closer to its neighbour in horizontal edge with one endpoint x;

ny(1xq,Tn)+ Ny, (1x1,Tn) -2 Jan-i+2_4
(11, Tn) g (121, Tn) T on-it1i_q

(suppose [), and are 2"+ — 1 vertices. So, \/ , and in

total, we have 3(21~1) edges like this one.

Finally, the number of vertices closer to vertex x, is the same as the number of
vertices closer to vertex u, the number of vertices closer to vertex x, is the same as the
number of vertices closer to vertex v, and the number of vertices closer to vertex v is the
same as the number of vertices closer to vertex u, and are 2™*1 — 1 vertices. So by the
definition of the Graovac-Ghorbani index and our argument, we have

ant24on_g
ABC6(Ty) = 6 ’m

. 2n+2+(2i;2 zn—t)+2n—i+1_4_
+ Z?:Z 3(21) <\/(2n+2_1+§ig% 2n—t)(2n—i+1_1)>

o [J2nit2 g 3V2nt2_g
+ (Z?:l 3(Zl 1) ( 2n—i+1_1 > + 2n+1_q ’
and therefore we have the result. ™

3.4 NANOSTAR DENDRIMERS

We want to compute the atom-bond connectivity of the nanostar dendrimer D, defined in
[19]. First we define recursively an auxiliary family of rooted dendrimers G, (k = 1). We
need a fixed graph F defined in Figure 21, we consider one of its endpoint to be the root of
F. The graph G; is defined in Figure 21, the leaf being its root. Now we define G, (k = 2)
the bouquet of the following 3 graphs: Gy_4,Gr—1, and F with respect to their roots;
the root of Gy, is taken to be its unique leaf (see G, and G5 in Figure 22). Finally, we define
D, (k = 1) as the bouquet of 3 copies of G, with respect to their roots (D, is shown in
Figure 23, where the circles represent hexagons).
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Figure 20: Graph T,,.

Figure 21: Graphs F and G, respectively.
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Figure 22: Graphs G, and G, respectively.

Theorem 3.13. For the dendrimer D;[n] we have:
ABC(D3[n]) = 6(2™) — 4 + (18(2") — 9)V2.

Proof. There are 3 + 9Y7_3 2% edges with endpoints of degree 3. Also there are 6 +
18 Y25 2k edges with endpoints of degree 3 and 2, and there are 12 + 18 Y223 2% edges
with endpoints of degree 2. Therefore

ABC(Ds[n]) = 3+ 95325 29 [557+ (6 + 18 X755 2) 522
n-1 ok 242-2
+ (12 + 18 X325 2°) @
and we have the result. m

A o

Figure 23: Nanostar D, and D5[2], respectively.
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