On the Difference of Atom-Bond Connectivity Index and Randić Index with Some Topological Indices

Document Type : Research Paper


1 Special Interest Group on Modelling and Data Analytics (SIGMDA),‎ ‎ Faculty of Ocean Engineering Technology and Informatics,‎‎ University Malaysia Terengganu,‎‎ 21030 UMT Kuala Nerus,‎‎Terengganu, ‎ Malaysia

2 Department of Mathematics,‎ Faculty of Science‎, ‎Golestan University,‎‎ Gorgan‎, ‎Iran

3 Department of Mathematics,‎‎ Estahban Branch‎, ‎Islamic Azad University,‎ Estahban, ‎ Iran‎


Assume denotes a connected and simple graph with edge set  E(G) as well as vertex set ‎V(G). ‎In chemical graph theory‎, ‎the atom-bond connectivity index, as well as the Randić index of graph are two well-defined topological indices‎. ‎In addition‎, ‎Ali and Du [On the difference between  ABC and Randić indices of binary and chemical trees‎, ‎Int‎. ‎J‎. ‎Quantum Chem‎. ‎(2017) e25446] recently unveiled the distinction between Randić and ABC indices‎. ‎In this report‎, ‎we study the link between the difference of Randić and ABC indices with certain well-studied topological indices‎. 


 1. A‎. ‎Ali and Z‎. ‎Du‎, ‎On the difference between atom-bond connectivity index and Randić index of binary and chemical trees‎, ‎Int. J. Quantum Chem. 117 (2017)‎‎ e25446‎.
2. ‎B‎. ‎Bollobás‎and ‎P‎. ‎Erdös‎, ‎Graphs of extremal weights‎, ‎
Ars Combin. 50 (1998) 225–233‎.
3. B‎. ‎Borovićanin‎, ‎K. C‎. ‎Das‎, ‎B‎. ‎Furtula and I‎. ‎Gutman‎, ‎Zagreb indices‎: ‎Bounds and extremal graphs‎, ‎in‎: ‎I‎. ‎Gutman‎, ‎B‎. ‎Furtula‎, ‎K. C‎. ‎Das‎, ‎E‎. ‎Milovanović and ‎I‎. ‎Milovanović (Eds.), ‎
Bounds in Chemical Graph Theory-Basics‎, ‎Univ‎.‎
Kragujevac‎,‎ Kragujevac‎, ‎2017‎, ‎pp‎. ‎76–153‎.
4. B‎. ‎Borovićanin‎, ‎K. C‎. ‎Das‎, ‎B‎. ‎Furtula and I‎. ‎Gutman‎, ‎Bounds for Zagreb indices‎, ‎
MATCH Commun. Math. Comput. Chem. 78 (2017)‎‎ 17–100‎.
5. J‎. ‎Chen and X‎. ‎Guo‎, ‎Extreme atom-bond connectivity index of graphs‎,
MATCH Commun. Math. Comput. Chem. 65 (2011)‎‎713–722‎.
6. Q‎. ‎Cui‎, ‎Q‎. ‎Qian and L‎. ‎Zhong‎, ‎The maximum atom-bond connectivity index for graphs with edge-connectivity one‎,
Discrete Appl. Math. 220 (2017)‎‎170–173.
 7. K. C‎. ‎Das‎, ‎S‎. ‎Das and B‎. ‎Zhou‎, Sum-connectivity index of a graph‎, ‎Front. Math. China 11 (1) (2016)‎‎47–54‎.
8. K. C‎. ‎Das and N‎. ‎Trinajstić, ‎Comparison between the first geometric-arithmetic index and atom-bond connectivity index‎, ‎Chem. Phys. Lett. 497 (2010)‎ ‎149–151‎.
9. J‎. ‎Devillers and A. T‎. ‎Balaban (Eds.)‎, ‎Topological Indices and Related Descriptors in QSAR and QSPR‎, ‎Gordon and Breach‎, ‎Amsterdam, The Netherlands‎, ‎1999‎.
10. D‎. ‎Dimitrov‎, ‎On the structural properties of trees with minimal atom-bond connectivity index II‎: ‎Bounds on ‎- ‎and -branches‎, ‎Discrete Appl. Math. 204 (2016)‎‎ 90–116‎.
11. E‎. ‎Estrada‎, ‎Atom-bond connectivity and energetic of branched alkanes‎, ‎Chem. Phys. Lett. 463 (2008) ‎422–425‎.
12. E‎. ‎Estrada‎, ‎L‎. ‎Torres‎, ‎L‎. ‎Rodriguez and I‎. ‎Gutman‎, ‎An atom-bond connectivity index‎: ‎modelling the enthalpy of formation of alkanes‎, ‎Indian J. Chem. Sect. A 37 (1998)‎‎849–855‎.
13. B‎. ‎Furtula‎, ‎I‎. ‎Gutman and S‎. ‎Ediz‎, ‎On the difference of Zagreb indices‎, ‎Discrete Appl . Math. 178 (2014) ‎83–88‎.
14. Y‎. ‎Gao and Y‎. ‎Shao‎, ‎The smallest index of trees with pendant vertices‎, MATCH Commun. Math. Comput. Chem. 76 (1) (2016)‎‎ 141–158‎.
15. I‎. ‎Gutman and B‎. ‎Furtula‎, ‎Recent Results in the Theory of Randić Index‎, ‎in‎: ‎Mathematical Chemistry Monograph‎ ‎6‎, ‎University of Kragujevac‎, ‎Kragujevac‎, ‎2008‎.
16. I‎. ‎Gutman‎, ‎B‎. ‎Furtula‎, ‎M. B‎. ‎Ahmadi‎, ‎S. A‎. ‎Hosseini‎, ‎P. S‎. ‎Nowbandegani and M‎. ‎Zarrinderakht‎, ‎The index conundrum‎, ‎Filomat 27 (2013)‎‎ 1075–1083‎.
17. I‎. ‎Gutman and N‎. ‎Trinajstić, ‎Graph theory and molecular orbitals‎. ‎Total π-electron energy of alternant hydrocarbons‎, ‎Chem. Phys. Lett. 17 (1972)‎ ‎535–538‎.
18. M‎. ‎Ghorbani and M‎. ‎A‎. ‎Hosseinzadeh‎, ‎A new version of Zagreb indices‎, Filomat 26 (1) (2012)‎‎93–100‎.
19. N. M‎. ‎Husin‎, ‎R‎. ‎Hasni‎, ‎Z‎. ‎Du and A‎. ‎Ali‎, ‎More results on extremum Randić indices of (molecular) trees‎, Filomat 32 (10) (2018)‎‎ 3581–3590‎.
20. S‎. ‎M‎. ‎Hosamani‎, ‎B‎. ‎B‎ . ‎Kulkarni‎, ‎R‎. ‎G‎. ‎Boli and V‎. ‎M‎. ‎Gadag‎: ‎QSPR analysis of‎ ‎certain graph theoretical matrices and their corresponding energy‎, ‎Appl. Math. Nonlin. Sci. 2 (2017) ‎‎131–150‎.
21. J‎. ‎Li‎, ‎S‎. ‎Balachandran‎, ‎S. K‎. ‎Ayyaswamy and Y. B‎. ‎Venkatakrishnan‎, ‎The Randić‎‎indices of trees‎, ‎unicyclic graphs and bicyclic graphs‎, Ars Combin. 127 (2016) ‎‎409–419‎.
22. X‎. ‎Li and I‎. ‎Gutman‎, ‎ Mathematical aspects of Randić-type molecular structure descriptors‎, ‎in‎: Mathematical Chemistry Monograph1‎, ‎University of Kragujevac‎, ‎Kragujevac‎, Serbia, 2006‎.
23. X‎. ‎Li and Y‎. ‎Shi‎, ‎A survey on the Randić index‎, MATCH Commun. Math. Comput. Chem. 59 (2008) ‎‎127–156‎.
24. J. B‎. ‎Liu‎, ‎M. M‎. ‎Matejić‎, ‎E. I‎. ‎Milovanović and I. Z‎. ‎Milovanović, ‎Some new inequalities for the forgotten topological index and coindex of graphs‎, MATCH Commun. Math. Comput. Chem. 84 (3) (2020)‎‎ 719–738‎.
25. D. S‎. ‎Mitrinović, ‎J. E‎. ‎Pečarić and ‎A. M‎. ‎Fink‎, Classical and New Inequalities in Analysis‎, Dordrecht, Netherlands: Kluwer,‎1993‎. ‎
26. G‎. ‎Pólya and G‎. ‎Szegö‎, ‎Problems and Theorems in Analysis, Series, Integral Calculus, Theory of Functions‎, ‎Springer-Verlag‎, ‎Berlin‎, ‎1972‎.
27. M‎.‎Randić‎, ‎On characterization of molecular branching‎,‎ J. Amer. Chem. Soc. 97 (1975)‎‎ 6609–6615‎.
28. M‎. ‎Randić‎, ‎On the history of the Randić index and emerging hostility towards chemical graph theory‎, ‎MATCH Commun. Math. Comput. Chem. 59 (2008)‎‎ 5–124‎. ‎
29. ‎J‎. ‎Radon‎, ‎Theorie und Anwendungen der absolut additive Mengenfunktionen‎, ‎Sitzungsber. Acad. Wissen. Wien. 122 (1913)‎‎ 1295–1438‎. ‎
30. Z‎. ‎Raza‎, ‎A. A‎. ‎Bhatti and A‎. ‎Ali‎, ‎More comparison between the first geometricarithmetic index and atom-bond connectivity index‎, Miskolc Math. Notes 17 (1) (2016)‎‎ 561–570‎.
31. P‎. ‎S‎. ‎Ranjini‎, ‎V‎. ‎Lokesha‎and ‎I‎. ‎N‎. ‎Cangul‎, ‎On the Zagreb indices of the line graphs of the subdivision graphs‎, Appl. Math. Comput. 218 (2011)‎‎ 699–702‎.
32. Z‎. ‎Shao‎, ‎P‎. ‎Wu‎, ‎Y‎. ‎Gao‎, ‎I‎. ‎Gutman and Z‎. ‎Zhang‎, ‎On the maximum index of graphs without pendent vertices‎, Appl. Math. Comput. 315 (2017)‎‎ 298–312‎.
33. R‎. ‎Todeschini and V‎. ‎Consonni‎, ‎Handbook of Molecular Descriptors‎, Wiley-VCH‎, ‎Weinheim‎, ‎2000‎. ‎
34. ‎D‎. ‎Vukičević and ‎B‎. ‎Furtula‎, ‎Topological index based on the ratios of geometrical and‎ ‎arithmetical means of end-vertex degrees of edges‎, ‎J. Math. Chem. 46 (2009)‎‎1369–1376‎.‎
35. J. F. Wang and F‎. ‎Belardo‎, ‎A lower bound for the first Zagreb index and its applications‎, ‎MATCH Commun. Math. Comput. Chem. 74 (2015)‎‎35–56‎.
36. W. N. N. N‎. ‎Wan Zuki‎, ‎Z‎. ‎Du‎, ‎M. K‎. ‎Jamil and R‎. ‎Hasni‎, ‎Extremal trees with respect to the difference between atom-bond connectivity index and Randić index‎, ‎Symmetry 12 (2020) ‎1591.
37. D. B‎. ‎West‎, ‎Introduction to Graph Theory‎, ‎2nd Ed.‎, Prentice Hall‎, ‎Inc.‎, Upper Saddle River, NJ, USA‎, ‎2001‎.
38. R‎. ‎Xing‎, ‎B‎. ‎Zhou and F. M‎. ‎Dong‎, ‎On the atom-bond connectivity index of connected graphs‎, ‎Discrete Appl. Math. 159 (2011)‎‎1617–1630‎.
39. K‎. ‎Xu‎, ‎K. C‎. ‎Das and S‎. ‎Balachandran‎, ‎Maximizing the Zagreb indices of (n,m)-graphs‎, ‎MATCH Commun. Math. Comput. Chem. 72 (2014) ‎‎641–654‎.
40. L‎. ‎Zhong and Q‎. ‎Cui‎, ‎ On a relation between the atom-bond connectivity and the first geometric-arithmetic indices‎, ‎Discrete Appl. Math. 185 (2015)‎‎ 249–253‎.