M-polynomial of some graph operations and Cycle related graphs

Document Type: Research Paper

Authors

1 KARNATAK UNIVERSITY DHARWAD

2 Department of Mathematics Karnatak University Dharwad, Karnatak-580003 India.

3 Department of Mathematics Karnatak University Dharwad, Karnataka-580003 India.

10.22052/ijmc.2019.146761.1388

Abstract

In this paper, we obtain M-polynomial of some graph operations and cy-
cle related graphs. As an application, we compute M-polynomial of some nanostruc-
tures viz., TUC4C8[p; q] nanotube, TUC4C8[p; q] nanotorus, line graph of subdivision
graph of TUC4C8[p; q] nanotube and TUC4C8[p; q] nanotorus, V-tetracenic nanotube
and V-tetracenic nanotorus. Further, we derive some degree based topological indices
from the obtained polynomials.

Keywords


1. M. S. Anjum and M. U. Safdar, K Banhatti and K hyper-Banhatti indices of
nanotubes, Eng. Appl. Sci. Lett. 2 (1) (2019) 19−37.
2. A. R. Ashrafi, T. Došlić and A. Hamzeh, Extremal graphs with respect to the
Zagreb coindices, MATCH Commun. Math. Comput. Chem. 65 (2011) 85−92.
3. A. R. Ashrafi, B. Manoochehrian and H. Yousefi-Azari, On the PI polynomial of a
graph, Util. Math. 71 (2006) 97−108.
4. B. Basavanagoud, A. P. Barangi and S. M. Hosamani, First neighbourhood Zagreb
index of some nano structures, Proc. Inst. Appl. Math. 7 (2) (2018) 178−193.
5. B. Basavanagoud and P. Jakkannavar, Kulli-Basava indices of graphs, Int. J. Appl.
Eng. Res. 14(1) (2019) 325−342.
6. B. Basavanagoud and P. Jakkannavar, Computing leap Zagreb indices of
generalized xyz-point-line transformation graphs T􀭶􀭷􀭸(G) when z = +, J. Comp.
Math. Sci. 9 (10) (2018) 1360−1383.
7. B. Basavanagoud, Chitra E, On the leap Zagreb indices of generalized xyz-pointline
transformation graphs T􀭶􀭷􀭸(G) when z = 1, Int. J. Math. Combin., 2 (2018) 44-
66.
8. B. Basavanagoud and P. Jakkannavar, M-polynomial and degree-based topological
indices of graphs, Electronic J. Math. Anal. Appl., 8 (1) (2020) 75−99.
9. G. G. Cash, Relationship between the Hosoya polynomial and the hyper-Wiener
index, Appl. Math. Lett. 15 (2002) 893−895.
10. E. Deutsch and S. Klavžar, M-Polynomial and degree-based topological indices,
Iran. J. Math. Chem. 6 (2) (2015) 93−102.
11. E. Deutsch and S. Klavžar, M-Polynomial revisited: Bethe cacti and an extension of
Gutman's approach, J. Appl. Math. Comput. 60 (2019) 253−264.
12. N. De, Computing reformulated first Zagreb index of some chemical graphs as an
application of generalized hierarchical product of graphs. Open J. Math. Sci. 2 (1)
(2018) 338−350.
13. N. De, Hyper Zagreb index of bridge and chain graphs, Open J. Math. Sci. 2 (1)
(2018) 1−17.

14. T. Došlić, Planar polycyclic graphs and their Tutte polynomials, J. Math. Chem. 51
(2013) 1599−1607.
15. E. J. Farrell, An introduction to matching polynomials, J. Combin. Theory Ser. B
27 (1979) 75−86.
16. S. Fajtlowicz, On conjectures of Graffiti - II, Congr. Numer. 60 (1987) 187−197.
17. J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. #DS6,
(2018) 502 pages.
18. W. Gao, M. Asif and W. Nazeer, The study of honey comb derived network via
topological indices, Open J. Math. Anal. 2 (2) (2018) 10−26.
19. I. Gutman, Molecular graphs with minimal and maximal Randić indices, Croat.
Chem. Acta 75 (2002) 357−369.
20. I. Gutman, The acyclic polynomial of a graph, Publ. Inst. Math. 22 (36) (1979)
63−69.
21. I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013)
351−361.
22. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total 􀟨-electron
energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535−538.
23. I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular
orbitals, XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399−3405.
24. F. Harary, Graph Theory, Addison-Wesely, Reading, 1969.
25. F. Hassani, A. Iranmanesh and S. Mirzaie, Schultz and modified Schultz
polynomials of 􀜥􀬵􀬴􀬴 fullerene, MATCH Commun. Math. Comput. Chem. 69 (2013)
87−92.
26. H. Hosoya, On some counting polynomials in chemistry, Discrete Appl. Math. 19
(1988) 239−257.
27. I. Javaid and S. Shokat, On the partition dimension of some wheel related graphs, J.
Prime Res. Math. 4 (2008) 154−164.
28. S. M. Kang, W. Nazeer, W. Gao, D. Afzal and S. N. Gillani, M-polynomials and
topological indices of dominating David derived networks, Open Chem. 16 (2018)
201−213.
29. Y. C. Kwun, M. Munir, W. Nazeer, R. Rafique and S. M. Kang, M-polynomials and
topological indices of V-phenylenic nanotubes and nanotori, Sci. Reports 7 (2017)
Art. 8756.
30. Y. Kins, Radio labeling of certain graphs, Ph.D. Thesis, University of Madras,
India, November 2011.
31. X. Li and H. Zhao, Trees with the first three smallest and largest generalized
topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57−62.

32. X. Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput.
Chem. 59 (2008) 127−156.
33. M. Munir, W. Nazeer, S. Rafique and S. M. Kang, M-polynomial and related
topological indices of nanostar dendrimers, Symmetry 8 (2016) 97.
34. M. Munir, W. Nazeer, S. Rafique, A. R. Nizami and S. M. Kang, M-polynomial and
degree-based topological indices of titania nanotubes, Symmetry 8 (2016) 117.
35. M. Munir, W. Nazeer, S. Rafique, A. R. Nizami and S. M. Kang, M-Polynomial
and Degree-Based Topological Indices of Polyhex Nanotubes Symmetry, 8 (2016)
149.
36. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97
(1975) 6609−6615.
37. M. Riaz, W. Gao and A. Q. Baig, M-Polynomials and degree-based Topological
Indices of Some Families of Convex Polytopes. Open J. Math. Sci. 2 (1) (2018)
18−28.
38. S. Roy, Packing chromatic number of certain fan and wheel related graphs, AKCE
Int. J. Graphs Comb. 14 (2017) 63−69.
39. Z. Shao, A. R. Virk, M. S. Javed, M. A. Rehman and M. R. Farahani, Degree based
graph invariants for the molecular graph of Bismuth Tri-Iodide, Eng. Appl. Sci. Lett.
2 (1) (2019) 1−11.
40. H. Siddiqui and M. R. Farahani, Forgotten polynomial and forgotten index of
certain interconnection networks, Open J. Math. Sci. 1 (1) (2017) 44−59.
41. Z. Tang, L. Liang and W. Gao, Wiener polarity index of quasi-tree molecular
structures, Open J. Math. Sci. 2 (1) (2018) 73−83.
42. S. K. Vaidyaa and M. S. Shukla, b-Chromatic number of some wheel related
graphs, Malaya J. Math. 2 (4) (2014) 482−488.
43. A. R. Virk, M. N. Jhangeer and M. A. Rehman, Reverse Zagreb and reverse hyper-
Zagreb indices for silicon carbide 􀜵􀝅􀬶􀜥􀬷􀜫[􀝎, 􀝏] and 􀜵􀝅􀬶􀜥􀬷􀜫􀜫[􀝎, 􀝏], Eng. Appl. Sci.
Lett. 1 (2) (2018) 37−50.
44. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69
(1947) 17−20.
45. L. Yan, M. R. Farahani and W. Gao, Distance-based indices computation of
symmetry molecular structures, Open J. Math. Sci. 2 (1) (2018) 323−337.
46. H. Zhang, F. Zhang, The Clar covering polynomial of hexagonal systems I,
Discrete Appl. Math. 69 (1996) 147−167.