Iranian Journal of Mathematical Chemistry

Journal homepage: ijmc.kashanu.ac.ir

M–Polynomial of some Graph Operations and Cycle Related Graphs

BOMMANAHAL BASAVANAGOUD[•], Anand Prakash Barangi and Praveen Jakkannavar

Department of Mathematics, Karnatak University, Dharwad - 580 003, Karnataka, India

ARTICLE INFO

Article History:

Received: 29 August 2018 Accepted: 5 May 2019 Published online 30 July 2019 Academic Editor: Sandi Klavžar

Keywords:

M-polynomial Degree-based topological index Line graph Subdivision graph Wheel graph

ABSTRACT

In this paper, we obtain M-polynomial of some graph operations and cycle related graphs. As an application, we compute Mpolynomial of some nanostructures viz., $TUC_4C_8[p,q]$ nanotube, $TUC_4C_8[p,q]$ nanotorus, line graph of subdivision graph of $TUC_4C_8[p,q]$ nanotube and $TUC_4C_8[p,q]$ nanotorus, Vtetracenic nanotube and V-tetracenic nanotorus. Further, we derive some degree based topological indices from the obtained polynomials.

© 2019 University of Kashan Press. All rights reserved

1. INTRODUCTION

Let G be a simple, connected, undirected graph of order n and size m with vertex set V(G)and edge set E(G). The degree $d_G(v)$ of a vertex $v \in V(G)$ is the number of edges incident to it in G. An isolated vertex or singleton graph is a vertex with degree zero. Let $\{v_1, v_2, \ldots, v_n\}$ be the vertices of G and let $d_i = d_G(v_i)$. The subdivision graph S(G) [24] of a graph G is the graph obtained by inserting a new vertex onto each edge of G. Let G_1 and G_2 be two graphs of order n_1 , n_2 and size m_1, m_2 respectively. The union [24] of G_1 and G_2 is the graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$ is denoted by $G_1 \cup G_2$ and $|V(G_1 \cup G_2)| = n_1 + n_2$, $|E(G_1 \cup G_2)| = m_1 + m_2$. The join [24] $G_1 + G_2$ of G_1 and G_2 is the graph obtained from $G_1 \cup G_2$ by joining each vertex of G_1 with every vertex of G_2 by an edge. Order and size of $G_1 + G_2$ are $n_1 + n_2$ and $m_1 + m_2 + n_1n_2$, respectively. The

[•]Corresponding Author (Email address: b.basavanagoud@gmail.com)

DOI: 10.22052/ijmc.2019.146761.1388

corona [24] $G_1 \circ G_2$ of two graphs G_1 and G_2 of order n_1 and n_2 respectively, is defined as the graph obtained by taking one copy of G_1 and n_1 copies of G_2 and then joining the i^{th} vertex of G_1 to every vertex in the i^{th} copy of G_2 . For undefined graph theoretic terminologies and notions refer [24].

Several topological indices have been defined in the literature. Among them some standard topological indices are first Zagreb index [22], second Zagreb index [23], modified second Zagreb index [10], Randic' index [36], harmonic index [16], symmetric division index [10] and inverse sum index [10]. The general form of these degree-based topological indices of a graph is given by

$$TI(G) = \sum_{e=uv\in E(G)} f(d_G(u), d_G(v)),$$

where f = f(x, y) is a function appropriately chosen for the computation. Table 1 gives the standard topological indices defined by f(x, y). For more details on degree-based and distance based topological indices refer [1-7,12,13,18,19,21,32,39-41,43,45].

It would be interesting that, if all these topological indices are obtained from a single expression. This role is played by polynomials. In fact there are several graph polynomials like PI polynomial [3], Tutte polynomial [14], matching polynomial [15,20], Schultz polynomial [25], Zang-Zang polynomial [46], etc., Among them, the Hosoya polynomial [26] is the best and well-known polynomial which plays a vital role in determining distance-based topological indices such as Wiener index [44], hyper Wiener index [9] of graphs. Similarly, M-polynomial which was introduced in 2015 by Deutsch and KlavZar in [10], which is useful in determining many degree-based topological indices (listed in Tables 1 and 2). This motivates us to study M-polynomial of some graph operations and some cycle related graphs. Recently, the study of M-polynomial are reported in [8,11,28,33–35,37].

Notation	Topological Index	f(x, y)	Derivation from $M(G; x, y)$	
$M_1(G)$	First Zagreb	x + y	$(D_x + D_y)(M(G; x, y)) _{x=y=1}$	
$M_2(G)$	Second Zagreb	xy	$(D_x D_y)(M(G; x, y)) _{x=y=1}$	
$M^{m}(C)$	Second modified	1	(S, S)(M(G; r, y))	
$M_2(0)$	Zagreb	xy	$(0_x y)(m(0, x, y)) _{x=y=1}$	
$S_D(G)$	Symmetric division	$\frac{x^2 + y^2}{xy}$	$(D_x S_y + D_y S_x)(M(G; x, y)) _{x=y=1}$	
H(G)	Harmonic	$\frac{2}{x+y}$	$2S_{x}J(M(G;x,y)) _{x=1}$	
$I_n(G)$	Inverse sum	$\frac{xy}{x+y}$	$S_{x}JD_{x}D_{y}(M(G;x,y)) _{x=1}$	

 Table 1. [10] Operators to derive degree-based topological indices from M-polynomial.

where, $D_x = x \frac{\partial f(x,y)}{\partial x}$, $D_y = y \frac{\partial f(x,y)}{\partial y}$, $S_x = \int_0^x \frac{f(t,y)}{t} dt$, $S_y = \int_0^y \frac{f(x,t)}{t} dt$ and J(f(x,y)) =

f(x, x) are the operators. Along with these operators, we also mention two more operators in Table 2 to calculate general sum connectivity index and first general Zagreb index.

Definition 1. [10] Let G be a graph. Then M-polynomial of G is defined as $M(G; x, y) = \sum_{i \le j} m_{ij}(G) x^i y^j$

where $m_{ij}, i, j \ge 1$, is the number [19] of edges uv of G such that $\{d_G(u), d_G(v)\} = \{i, j\}$.

Table 2: New operators to derive degree-based topological indices from M-polynomial.

Notation	Topological Index	f(x, y)	Derivation from M(G; x, y)
$\chi_{\alpha}(G)$	General sum connectivity [21]	$(x+y)^{\alpha}$	$D_x^{\alpha}(J(M(G;x,y))) _{x=1}$
$M_1^{\alpha}(G)$	First general Zagreb [31]	$x^{\alpha-1} + y^{\alpha-1}$	$(D_x^{\alpha-1} + D_y^{\alpha-1})(M(G; x, y)) _{x=y=1}$

Note 1: Hyper Zagreb index is obtained by taking $\alpha = 2$ in general sum connectivity index. Note 2: Taking $\alpha = 2,3$ in first general Zagreb index, first Zagreb and forgotten topological indices are obtained respectively.

2. M-POLYNOMIAL OF SOME GRAPH OPERATIONS

In this section, we obtain M-polynomial of some graph operations.

Lemma 2.1. For any *r*-regular graph *G* of order *n* and size *m*, the *M*-polynomial of *G* is given by $M(G; x, y) = mx^r y^r$.

Proof. Since G is a r-regular graph with m edges and every edge is incident on vertex of degree r, the proof follows. \Box

The *product* [24] $G \times H$ of graphs G and H has the vertex set $V(G \times H) = V(G) \times V(H)$ and (a, x)(b, y) is an edge of $G \times H$ if and only if $[a = b \text{ and } xy \in E(H)]$ or $[x = y \text{ and } ab \in E(G)]$.

Theorem 2.2. Let G be an r_1 -regular graph of order n_1 and H be an r_2 -regular graph of order n_2 . Then $M(G \times H; x, y) = n_1 n_2 x^{r_1+r_2} y^{r_1+r_2}$.

Proof. Since the graphs *G* and *H* are regular graphs of degree r_1 and r_2 respectively. Therefore the graph obtained by product of *G* and *H* is a regular graph of degree $r_1 + r_2$ with n_1n_2 vertices. Hence the result follows from Lemma 2.1.

Figure 1. Some cycle related graphs.

The composition [24] G[H] of graphs G and H with disjoint vertex sets V(G) and V(H) and edge sets E(G) and E(H) is the graph with vertex set $V(G[H]) = V(G) \times V(H)$ and (a, x)(b, y) is an edge of G[H] if and only if [a is adjacent to b in G] or [a = b and x is adjacent to y in H].

Theorem 2.3. Let G be an r_1 -regular graph of order n_1 and H be an r_2 -regular graph of order n_2 . Then, $M(G[H]; x, y) = n_1 n_2 x^{n_2 r_1 + r_2} y^{n_2 r_1 + r_2}$.

Proof. Since *G* and *H* are regular graphs of degree r_1 and r_2 respectively. The graph obtained by the composition of two graphs *G* and *H* is a regular graph of degree $n_2r_1 + r_2$ with n_1n_2 vertices. Hence the result follows from Lemma 2.1.

3. M-POLYNOMIAL OF CYCLE RELATED GRAPHS

In this section, we obtain M-polynomial of some cycle related graphs, Figure 1. Definitions 2-10 can be found in [17], definition 11 is in [42] and definitions 12-16 can be found in [30, 38]. We also derive some topological indices (mentioned in Tables 1 and 2) of these graphs from the respective M-polynomials. For more details on wheel related graphs refer [17,27,38,42] and references cited there in.

Definition 2. The fan graph F_{n_1} ($n \ge 3$) is defined as the graph $K_1 + P_n$, where K_1 is singleton graph and P_n is the path on n vertices.

Theorem 3.1. Let F_n be a fan of order n + 1 and size 2n - 1. Then, $M(F_n; x, y) = 2x^2y^3 + 2x^2y^n + (n - 3)x^3y^3 + (n - 2)x^3y^n$.

Proof. The fan F_n has n + 1 vertices and 2n - 1 edges. It is easy to see that $|m_{\{2,3\}}| = 2$, $|m_{\{2,n\}}| = 2$ and the remaining edge partition of F_n is as follows:

 $\begin{aligned} |E_{\{3,3\}}| &= |uc \in E(F_n): d_u = 3 \text{ and } d_c = 3| = (n-3), \\ |E_{\{3,n\}}| &= |uc \in E(F_n): d_u = 3 \text{ and } d_c = n| = (n-2), \end{aligned}$

proving the result.

Corollary 3.2. If F_n is a Fan, then

1.
$$M_1(F_n) = n^2 + 9n - 10,$$

2. $M_2(F_n) = 3n^2 + 7n - 15,$
3. $M_2^m(F_n) = \frac{n^2 + 3n + 3}{9n},$
4. $S_D(F_n) = \frac{n^3 + 7n^2 + 4n - 6}{3n},$
5. $H(F_n) = \frac{n^2 + 2n + 12}{3(n+2)} + \frac{9n - 23}{5(n+3)},$
6. $I_n(F_n) = \frac{3n(n-2)}{n+3} + \frac{3(5n-7)}{10} + \frac{4n}{n+2'},$
7. $\chi_{\alpha}(F_n) = 2 \cdot 5^{\alpha} + 2(n+2)^{\alpha} + (n-3) \cdot 6^{\alpha} + (n-2)(n-3)^{\alpha},$
8. $M_1^{\alpha}(F_n) = 2^{\alpha+2} + 3^{\alpha}(2n-5) + 3^{\alpha}(n-1) + n^{\alpha+1}.$

Proof. The M-polynomial for fan F_n is given by

$$M(F_n; x, y) = 2x^2y^3 + 2x^2y^n + (n-3)x^3y^3 + (n-2)x^3y^n$$
.
Using the expressions from Tables 1 and 2, we have

$$D_x = x \frac{\partial f(x,y)}{\partial x} = 4x^2 y^n + 4x^2 y^3 + 3(n-3)x^3 y^3 + 3(n-2)x^3 y^n$$

$$D_y = y \frac{\partial f(x,y)}{\partial y} = 2nx^2 y^n + 6x^2 y^3 + 3(n-3)x^3 y^3 + n(n-2)x^3 y^n$$

$$S_x = \int_0^x \frac{f(t,y)}{t} dt = x^2 y^n + x^2 y^3 + \frac{(n-3)}{3}x^3 y^3 + \frac{(n-2)}{3}x^3 y^n$$

$$S_y = \int_0^y \frac{f(x,t)}{t} dt = \frac{2}{n}x^2 y^n + \frac{2}{3}x^2 y^3 + \frac{(n-3)}{3}x^3 y^3 + \frac{(n-2)}{n}x^3 y^n.$$

Therefore,

$$\begin{split} M_{1}(F_{n}) &= \left(D_{x} + D_{y}\right) \left(M(F_{n}; x, y)\right)|_{x=y=1} = n^{2} + 9n - 10, \\ M_{2}(F_{n}) &= \left(D_{x}D_{y}\right) \left(M(F_{n}; x, y)\right)|_{x=y=1} = 3n^{2} + 7n - 15, \\ M_{2}^{m}(F_{n}) &= \left(S_{x}S_{y}\right) \left(M(F_{n}; x, y)\right)|_{x=y=1} = \frac{1}{3n} + \frac{n+3}{9}, \\ S_{D}(F_{n}) &= \left(D_{x}S_{y} + D_{y}S_{x}\right) \left(M(F_{n}; x, y)\right)|_{x=y=1} = \frac{n^{3} + 7n^{2} + 4n - 6}{3n}, \\ H(F_{n}) &= 2S_{x}J\left(M(F_{n}; x, y)\right)|_{x=1} = \frac{n^{2} + 2n + 12}{3(n+2)} + \frac{9n - 23}{5(n+3)}, \\ I_{n}(F_{n}) &= S_{x}JD_{x}D_{y}\left(M(Fn; x, y)\right)|_{x=1} = \frac{3n(n-2)}{n+3} + \frac{3(5n-7)}{10} + \frac{4n}{n+2}, \\ \chi_{\alpha}(F_{n}) &= D_{x}^{\alpha}\left(J\left(M(F_{n}; x, y)\right)\right)|_{x=1} = 2 \cdot 5^{\alpha} + 2(n+2)^{\alpha} + (n-3) \cdot 6^{\alpha} + (n-2)(n-3)^{\alpha}, \\ M_{\alpha}^{1}(F_{n}) &= \left(D_{x}^{\alpha} + D_{y}^{\alpha}\right) \left(M(F_{n}; x, y)\right)|_{x=y=1} = 2^{\alpha+2} + 3^{\alpha}(2n-5) + 3^{\alpha}(n-1) + n^{\alpha+1}. \end{split}$$

Definition 3. The wheel $W_n = C_n + K_1$ is a graph with n + 1 vertices and 2n edges, where the vertex c with degree n is called the central vertex while the vertices on the cycle C_n are called rim vertices.

Theorem 3.3. Let W_n be a wheel of order n + 1 and size 2n. Then, $M(W_n; x, y) = nx^3y^3(1 + y^{n-3}).$

Proof. The wheel W_n has n + 1 vertices and 2n edges. The edge set of W_n can be partitioned as,

$$\begin{aligned} |E_{\{3,3\}}| &= |uv \in E(W_n): d_u = 3 \quad and \quad d_v = 3| = n, \\ |E_{\{3,n\}}| &= |uc \in E(W_n): d_u = 3 \quad and \quad d_c = n| \\ &= |E(W_n) - |E_{\{3,3\}}| = n. \end{aligned}$$

Corollary 3.4. If W_n is a wheel, then

- 1. $M_1(W_n) = n^2 + 9n$
- 2. $M_2(W_n) = 3n^2 + 9n$,

3.
$$M_2^m(W_n) = \frac{n+3}{9}$$
,
4. $S_D(W_n) = \frac{n^2+6n+9}{3}$,
5. $H(W_n) = \frac{n^2+9n}{3(n+3)}$,
6. $I_n(W_n) = \frac{3n}{2} + \frac{3n^2}{n+3}$,
7. $\chi_\alpha(W_n) = n(6^\alpha + (n+3)^\alpha)$,
8. $M_1^\alpha(W_n) = 3^{\alpha+1} + n^\alpha$.

Proof. Let $M(W_n; x, y) = \sum_{i \le j} m_{ij}(W_n) x^i y^j = nx^3 y^3 (1 + y^{n-3})$. Using the expressions from Tables 1 and 2, we have

$$D_{x} = x \frac{\partial f(x, y)}{\partial x} = 3nx^{3}y^{3} + 3nx^{3}y^{n}$$

$$D_{y} = y \frac{\partial f(x, y)}{\partial y} = 3nx^{3}y^{3} + n^{2}x^{3}y^{n}$$

$$S_{x} = \int_{0}^{x} \frac{f(t, y)}{t} dt = \frac{nx^{3}y^{3}}{3} + \frac{nx^{3}y^{n}}{3}$$

$$S_{y} = \int_{0}^{y} \frac{f(x, t)}{t} dt = \frac{nx^{3}y^{3}}{3} + x^{3}y^{n}.$$

Thus we get,

$$\begin{split} M_{1}(W_{n}) &= (D_{x} + D_{y}) (M(W_{n}; x, y))|_{x=y=1} = n^{2} + 9n, \\ M_{2}(W_{n}) &= (D_{x}D_{y}) (M(W_{n}; x, y))|_{x=y=1} = 3n^{2} + 9n, \\ M_{2}^{m}(W_{n}) &= (S_{x}S_{y}) (M(W_{n}; x, y))|_{x=y=1} = \frac{n}{9} + \frac{1}{3}, \\ S_{D}(W_{n}) &= (D_{x}S_{y} + D_{y}S_{x}) (M(W_{n}; x, y))|_{x=y=1} = \frac{n^{2}+6n+9}{3}, \\ H(W_{n}) &= 2S_{x}J (M(W_{n}; x, y))|_{x=1} = \frac{n}{3} + \frac{2n}{n+3}, \\ I_{n}(W_{n}) &= S_{x}JD_{x}D_{y} (M(W_{n}; x, y))|_{x=1} = \frac{3n}{2} + \frac{3n^{2}}{n+3}, \\ \chi_{\alpha}(W_{n}) &= D_{x}^{\alpha} \left(J (M(W_{n}; x, y))\right)|_{x=1} = n(6^{\alpha} + (n+3)^{\alpha}), \\ M_{1}^{\alpha}(W_{n}) &= (D_{x}^{\alpha} + D_{y}^{\alpha}) (M(W_{n}; x, y))|_{x=y=1} = 3^{\alpha+1} + n^{\alpha}. \end{split}$$

Definition 4. The gear graph G_n is a wheel graph with a vertex added between each pair adjacent vertices of the outer circle.

Theorem 3.5. Let G_n be a gear graph. Then $M(G_n; x, y) = 2nx^2y^3 + nx^3y^n$.

Proof. Let G_n is a graph having (2n + 1) vertices and 3n edges. The edge partition of G_n is given by,

$$\begin{aligned} |E_{\{2,3\}}| &= |uv \in E(G_n): d_u = 2 \text{ and } d_v = 3| = 2n, \\ |E_{\{3,n\}}| &= |uv \in E(G_n): d_u = 3 \text{ and } d_v = n| \\ &= |E(G_n)| - |E_{\{2,3\}}| = n. \end{aligned}$$

Using definition of M-polynomial and above edge partitions, we get the desired result. \Box

Corollary 3.6. If G_n is a gear graph, then

1. $M_1(G_n) = n^2 + 13n_i$ 2. $M_2(G_n) = 3n^2 + 12n_i$, 3. $M_2^m(G_n) = \frac{n+1}{3}$, 4. $S_D(G_n) = \frac{n^2}{3} + \frac{13n}{3} + 3$, 5. $H(G_n) = \frac{4n}{5} + \frac{n}{n+3}$, 6. $I_n(G_n) = \frac{12n}{5} + \frac{3n^2}{n+3}$, 7. $\chi_{\alpha}(G_n) = 2n5^{\alpha} + n(n+3)^{\alpha}$, 8. $M_1^{\alpha}(G_n) = n(2^{\alpha+1} + 3^{\alpha+1} + n^{\alpha})$.

Definition 5. The helm H_n is a graph obtained from a wheel W_n with central vertex c, by attaching a pendant edge to each rim vertex of W_n . A closed helm CH_n is the graph with central vertex c, obtained from a helm by joining each pendant vertex to form a cycle.

Theorem 3.7. Let H_n be a helm. Then $M(H_n; x, y) = nxy^4 + nx^4y^4 + nx^4y^n$.

Proof. Let H_n is a graph having (2n + 1) vertices and 3n edges. The edge partition of H_n is given by,

$$\begin{aligned} |E_{\{1,4\}}| &= |uv \in E(H_n): d_u = 1 \quad and \quad d_v = 4| = n, \\ |E_{\{4,4\}}| &= |uv \in E(H_n): d_u = 4 \quad and \quad d_v = 4| = n, \\ |E_{\{4,n\}}| &= |uv \in E(H_n): d_u = 4 \quad and \quad d_v = n| \\ &= |E(H_n)| - |E_{\{1,4\}}| - |E_{\{4,4\}}| = n. \end{aligned}$$

Corollary 3.8. If H_n is a helm graph, then $1 \quad M_1(H_n) = n^2 + 17n$

1.
$$M_1(H_n) = n^2 + 1/n$$
,
2. $M_2(H_n) = 4n^2 + 20n$,
3. $M_2^m(H_n) = \frac{5n+4}{16}$,
4. $S_D(H_n) = \frac{n(n+1)}{4} + 6n + 4$,
5. $H(H_n) = \frac{2n}{5} + \frac{n}{4} + \frac{2n}{n+4}$,
6. $I_n(H_n) = \frac{n^2}{n+4} + \frac{14n}{5}$,

7.
$$\chi_{\alpha}(H_n) = n(5^{\alpha} + 8^{\alpha} + (n+4)^{\alpha},$$

8. $M_1^{\alpha}(H_n) = n(4^{\alpha+1} + n^{\alpha}).$

Theorem 3.9. Let CH_n be a closed helm. Then $M(CH_n; x, y) = nx^3y^3 + nx^3y^4 + nx^4y^4 + nx^4y^n.$

Proof. Let CH_n is a graph having (2n + 1) vertices and 4n edges. The edge partition of CH_n is given by,

Corollary 3.10. If CH_n is a gear graph, then

1.
$$M_1(CH_n) = n^2 + 25n$$
,
2. $M_2(CH_n) = 4n^2 + 37n$,
3. $M_2^m(CH_n) = \frac{37n+36}{144}$,
4. $S_D(CH_n) = \frac{73n+3}{12}$,
5. $H(CH_n) = \frac{n}{3} + \frac{n}{4} + \frac{2n}{7} + \frac{2n}{n+4}$,
6. $I_n(CH_n) = \frac{3n}{2} + \frac{12n}{7} + \frac{4n^2}{n+4} + 2n$,
7. $\chi_{\alpha}(CH_n) = n(6^{\alpha} + 7^{\alpha} + 8^{\alpha} + (n+4)^{\alpha})$,
8. $M_1^{\alpha}(CH_n) = n(3^{\alpha+1} + 4^{\alpha+1} + n^{\alpha})$.

Definition 6. The flower Fl_n is the graph obtained from a helm H_n by joining each pendant vertex to the central vertex c of the helm.

Theorem 3.11. Let Fl_n be a flower. Then $M(Fl_n; x, y) = nx^2y^4 + nx^2y^{2n} + nx^4y^4 + nx^4y^{2n}.$

Proof. Let flower Fl_n is a graph having (2n + 1) vertices and 4n edges. The edge partition of Fl_n is given by,

$$\begin{aligned} |E_{\{2,4\}}| &= |uv \in E(Fl_n): d_u = 2 \quad and \quad d_v = 4| = n, \\ |E_{\{2,2n\}}| &= |uv \in E(Fl_n): d_u = 2 \quad and \quad d_v = 2n| = n, \\ |E_{\{4,4\}}| &= |uv \in E(Fl_n): d_u = 4 \quad and \quad d_v = 4| = n, \\ |E_{\{4,2n\}}| &= |uv \in E(Fl_n): d_u = 4 \quad and \quad d_v = 2n| \\ &= |E(Fl_n)| - |E_{\{2,4\}}| - |E_{\{2,2n\}}| - |E_{\{4,4\}}| = n. \end{aligned}$$

Corollary 3.12. If Fl_n is a flower graph, then

1. $M_1(Fl_n) = 4n(n+5),$ 2. $M_2(Fl_n) = 12n(n+2),$ 3. $M_2^m(Fl_n) = \frac{3n+6}{16},$ 4. $S_D(Fl_n) = \frac{3n^2}{2} + \frac{5n}{2} + 3,$ 5. $H(Fl_n) = \frac{n}{n+1} + \frac{n}{n+2} + \frac{7n}{8},$ 6. $I_n(Fl_n) = \frac{4n}{3} + \frac{2n^2}{n+1} + \frac{4n^2}{n+2} + 2n,$ 7. $\chi_{\alpha}(Fl_n) = n(6^{\alpha} + 8^{\alpha} + (2n+2)^{\alpha} + (2n+4)^{\alpha}),$ 8. $M_1^{\alpha}(Fl_n) = n(2^{\alpha+1} + 4^{\alpha+1} + n^{\alpha}2^{\alpha+1}).$

Definition 7. The sunflower graph SF_n is a graph obtained from a wheel with central vertex c, n-cycle $v_0, v_1, \ldots, v_{n-1}$ and additional n vertices $w_0, w_1, \ldots, w_{n-1}$ where w_i is joined by edges to v_i, v_{i+1} for $i = 0, 1, \ldots, n-1$ where i + 1 is taken modulo n.

Theorem 3.13. Let SF_n be a sunflower. Then $M(SF_n; x, y) = 2nx^2y^5 + nx^5y^5 + nx^5y^n$.

Proof. The sunflower graph SF_n is a graph having (2n + 1) vertices and 4n edges. The edge partition of SF_n is given by,

$$\begin{aligned} |E_{\{2,5\}}| &= |uv \in E(SF_n): d_u = 2 \quad and \quad d_v = 5| = 2n, \\ |E_{\{5,5\}}| &= |uv \in E(SF_n): d_u = 5 \quad and \quad d_v = 5| = n, \\ |E_{\{5,n\}}| &= |uv \in E(SF_n): d_u = 5 \quad and \quad d_v = n| \\ &= |E(SF_n)| - |E_{\{2,5\}}| - |E_{\{5,5\}}| = n. \end{aligned}$$

Corollary 3.14. If SF_n is a sunflower graph, then

1.
$$M_1(SF_n) = n^2 + 29n$$
,
2. $M_2(SF_n) = 5n(n+9)$,
3. $M_2^m(SF_n) = \frac{n}{5} + \frac{n}{25} + \frac{1}{5'}$,
4. $S_D(SF_n) = \frac{n^2 + 39n + 25}{5}$,
5. $H(SF_n) = \frac{4n}{7} + \frac{n}{5} + \frac{2n}{n+5'}$,
6. $I_n(SF_n) = \frac{5n^2}{n+5} + \frac{5n}{2} + \frac{20n}{7'}$,
7. $\chi_{\alpha}(SF_n) = n(2 \cdot 7^{\alpha} + 10^{\alpha} + (n+5)^{\alpha})$,
8. $M_1^{\alpha}(SF_n) = n(2^{\alpha+1} + 5^{\alpha+1} + n^{\alpha})$.

Definition 8. The friendship graph f_n is a collection of n-triangles with a common vertex. Friendship graph can also be obtained from a wheel W_{2n} with cycle C_{2n} by deleting alternate edges of the cycle. That is $f_n = K_1 + nK_2$.

Theorem 3.15. Let f_n be a friendship graph. Then $M(f_n; x, y) = nx^2y^2 + 2nx^2y^{2n}$.

Proof. Let friendship graph f_n is a graph having (2n + 1) vertices and 3n edges. The edge partition of f_n is given by,

$$\begin{aligned} |E_{\{2,2\}}| &= |uv \in E(f_n): d_u = 2 \quad and \quad d_v = 2| = n, \\ |E_{\{2,2n\}}| &= |uv \in E(f_n): d_u = 2 \quad and \quad d_v = 2n| \\ &= |E(f_n)| - |E_{\{2,2\}}| = 2n. \end{aligned}$$

Corollary 3.16. If f_n is a flower graph, then

1.
$$M_1(f_n) = 4n(n+2),$$

2. $M_2(f_n) = 4n(2n+1),$
3. $M_2^m(f_n) = \frac{n+2}{4},$
4. $S_D(f_n) = 2(n^2 + n + 1),$
5. $H(f_n) = \frac{n}{2} + \frac{2n}{n+1},$
6. $I_n(f_n) = n + \frac{4n^2}{n+1},$
7. $\chi_{\alpha}(f_n) = n(4^{\alpha} + 2^{\alpha+1}(n+1)^{\alpha}),$
8. $M_1^{\alpha}(f_n) = n2^{\alpha+1}(n+2).$

Definition 9. A web graph is the graph obtained by joining a pendant edge to each vertex on the outer cycle of the closed helm. W(t,n) is the generalized web with t cycles each of order n.

Theorem 3.17. Let W(t, n) be a generalized web. Then $M(W(t, n); x, y) = nxy^4 + n(2t - 1)x^4y^4 + nx^4y^n.$

Proof. Let generalized web W(t, n) is a graph having (tn + n + 1) vertices and n(2t + 1) edges. The edge partition of W(t, n) is given by,

$$\begin{aligned} |E_{\{1,4\}}| &= |uv \in E(W(t,n)): d_u = 1 \quad and \quad d_v = 4| = n, \\ |E_{\{4,4\}}| &= |uv \in E(W(t,n)): d_u = 4 \quad and \quad d_v = 4| = n(2t-1), \\ |E_{\{4,n\}}| &= |uv \in E(W(t,n)): d_u = 4 \quad and \quad d_v = n| \\ &= |E(W(t,n))| - |E_{\{1,4\}}| - |E_{\{4,4\}}| = n. \end{aligned}$$

Corollary 3.18. If W(t, n) be a generalized web, then

1.
$$M_1(W(t,n)) = n(n+8(2t-1)+9),$$

2. $M_2(W(t,n)) = 4n(n+4(2t-1)+1),$
3. $M_2^m(W(t,n)) = \frac{n}{4} + \frac{n(2t-1)}{16} + \frac{1}{4},$
4. $S_D(W(t,n)) = \frac{n^2}{2} + \frac{n}{4} + 2n(2t-1) + 4n + 4,$
5. $H(W(t,n)) = \frac{2n}{5} + \frac{n(2t-1)}{4} + \frac{2n}{n+4},$
6. $I_n(W(t,n)) = \frac{4n}{5} + 2n(2t-1) + \frac{4n^2}{n+4},$
7. $\chi_{\alpha}(W(t,n)) = n(5^{\alpha} + (2t-1)8^{\alpha} + (4+n)^{\alpha},$
8. $M_1^{\alpha}(W(t,n)) = 2n \cdot 4^{\alpha} + 2n \cdot 4^{\alpha}(2t-1) + n^{\alpha+1} + n.$

Definition 10. The crown (or sun) CW_n is a corona of form $C_n \circ K_1$ where $n \ge 3$. That is crown is a helm without central vertex.

Theorem 3.19. Let CW_n be a crown graph. Then $M(CW_n; x, y) = nxy^3 + nx^3y^3.$

Proof. Let CW_n is a crown graph having 2n vertices and 2n edges. The edge partition of CW_n is given by,

$$|E_{\{1,3\}}| = |uv \in E(CW_n): d_u = 1 \text{ and } d_v = 3| = n,$$

$$|E_{\{3,3\}}| = |uv \in E(CW_n): d_u = 3 \text{ and } d_v = 3|$$

$$= |E(CW_n)| - |E_{\{1,3\}}| = n.$$

Corollary 3.20. If CW_n is a flower graph, then

1. $M_1(CW_n) = 10n_i$ 2. $M_2(CW_n) = 12n$, 3. $M_2^m(CW_n) = \frac{4n}{9}$, 4. $S_D(CW_n) = \frac{10n}{3}$, 5. $H(CW_n) = \frac{n}{2} + \frac{n}{3}$, 6. $I_n(CW_n) = \frac{9n}{4}$, 7. $\chi_{\alpha}(CW_n) = n(4^{\alpha} + 6^{\alpha})$, 8. $M_1^{\alpha}(CW_n) = n(3^{\alpha+1} + 1)$.

The *duplication of an edge* [42] e = uv by a new vertex v' in a graph G produces a new graph G' by adding a new vertex v' such that $N(v') = \{u, v\}$.

Definition 11. Consider a wheel $W_n = C_n + K_1$ with $v_1, v_2, ..., v_n$ as its rim vertices and c as its central vertex. Let $e_1, e_2, ..., e_n$ be the rim edges of W_n which are duplicated by new vertices $w_1, w_2, ..., w_n$, respectively and let $f_1, f_2, ..., f_n$ be the spoke edges of W_n which are duplicated by the vertices $u_1, u_2, ..., u_n$, respectively. The resultant graph is called duplication of the wheel denoted by DuW_n .

Theorem 3.21. Let DuW_n be the duplication of the wheel. Then $M(DuW_n; x, y) = 3nx^2y^6 + nx^2y^{2n} + nx^6y^6 + nx^6y^{2n}$.

Proof. Let duplication of the wheel DuW_n is a graph having (3n + 1) vertices and 6n edges. The edge partition of DuW_n is given by,

Corollary 3.22. If CW_n be the duplication of the wheel, then

1.
$$M_1(DuW_n) = 4n(n+11),$$

2. $M_2(DuW_n) = 8n(2n+9),$,
3. $M_2^m(DuW_n) = \frac{5n+6}{18},$
4. $S_D(DuW_n) = \frac{4n^2+17n+16}{4},$
5. $H(DuW_n) = \frac{3n}{4} + \frac{n}{n+1} + \frac{n}{6} + \frac{n}{n+3},$
6. $I_n(DuW_n) = \frac{9n}{2} + \frac{8n^2}{n+1} + 3n,$
7. $\chi_\alpha(DuW_n) = n(3 \cdot 8^{\alpha} + 12^{\alpha} + (2n+2)^{\alpha} + (2n+6)^{\alpha}),$
8. $M_1^{\alpha}(DuW_n) = (4n \cdot 2^{\alpha} + 6n \cdot 6^{\alpha} + (2n)^{\alpha+1}).$

Definition 12. A uniform n-fan split graph SF_n^r , contains a star S_{n-1} with hub at x such that the deletion of n edges of S_{n-1} partitions the graph into n independent fans $F_r^i = P_r^i + K_{1i}$ $(1 \le i \le n)$ and a isolated vertex, Figure 2.

Figure 2. Self explanatory examples of SF_4^9 , SW_4^9 and KW(6, 9) graphs.

Theorem 3.23. Let SF_n^r be a uniform n-fan split graph. Then $M(SF_n^r; x, y) = 2nx^2y^3 + 2nx^2y^{r+1} + n(r-3)x^3y^3 + n(r-2)x^3y^{r+1} + nx^ny^{r+1}.$

Proof. The uniform *n*-fan split graph SF_n^r has (nr + n + 1) vertices and 2nr edges. The edge set of SF_n^r can be partitioned as,

$$\begin{split} |E_{\{2,3\}}| &= |uv \in E(SF_n^r): d_u = 2 \quad and \quad d_v = 3| = 2n, \\ |E_{\{2,r+1\}}| &= |uc \in E(SF_n^r): d_u = 2 \quad and \quad d_c = r+1| = 2n, \\ |E_{\{3,3\}}| &= |uc \in E(SF_n^r): d_u = 3 \quad and \quad d_c = 3| = n(r-3), \\ |E_{\{3,r+1\}}| &= |uc \in E(SF_n^r): d_u = 3 \quad and \quad d_c = r+1| = n(r-2), \\ |E_{\{n,r+1\}}| &= |uc \in E(SF_n^r): d_u = n \quad and \quad d_c = r+1| \\ &= |E(SF_n^r) - |E_{\{2,3\}}| - |E_{\{2,r+1\}}| - |E_{\{3,3\}}| - |E_{\{3,r+1\}}| = n. \end{split}$$

Corollary 3.24. If SF_n^r be a uniform *n*-fan split graph, then

1.
$$M_1(SF_n^r) = n(r^2 + 11r + n - 9),$$

2. $M_2(SF_n^r) = n(3r^2 + nr + 10r + n - 17),$
3. $M_2^m(SF_n^r) = \frac{9+n(3+4r+r^2)}{9(r+1)},$
4. $S_D(SF_n^r) = \frac{3n^2+3(r+1)^2+n(r^3+9r^2+13r-10)}{3(r+1)},$
5. $H(SF_n^r) = \frac{2n}{15}(\frac{15}{n+r+1} - \frac{90}{r+4} + \frac{30}{r+3} + 10r - 9),$
6. $I_n(SF_n^r) = \frac{n^2(r+1)}{(n+r+1)} + \frac{n(45r^3+184r^2+83r-272)}{10(r+3)(r+4)},$
7. $\chi_\alpha(SF_n^r) = 2n5^\alpha + 2n(r+3)^\alpha + n(r-3)6^\alpha + n(r-2)(r+4)^\alpha + n(n+r+1)^\alpha,$
8. $M_1^\alpha(SF_n^r) = 4n \cdot 2^\alpha + 2n(r-3)3^\alpha + n(r-2)3^\alpha + 2n \cdot 3^\alpha + n^{\alpha+1} + n(r-2)(r+1)^\alpha + n(r+1)^\alpha.$

Definition 13. The graph SW_n^r contains a star S_{n-1} with hub at x such that the deletion of the n edges of S_{n-1} partitions the graph into n independent wheels $W_r^i = C_r^i + K_{1'}$ $(1 \le i \le n)$ and an isolated vertex, Figure 2.

Theorem 3.25. Let SW_n^r be the graph having (nr + n + 1) vertices and n(2r + 1) edges. Then

$$M(SW_n^r; x, y) = nrx^3y^3 + nrx^3y^{r+1} + nx^ny^{r+1}$$

Proof. Let SW_n^r is a graph having (nr + n + 1) vertices and n(2r + 1) edges. The edge partition of SW_n^r is given by,

$$\begin{aligned} |E_{\{3,3\}}| &= |uv \in E(SW_n^r): d_u = 3 \quad and \quad d_v = 3| = nr, \\ |E_{\{3,r+1\}}| &= |uv \in E(SW_n^r): d_u = 3 \quad and \quad d_v = r+1| = nr, \\ |E_{\{n,r+1\}}| &= |uv \in E(SW_n^r): d_u = n \quad and \quad d_v = r+1| \\ &= |E(SW_n^r)| - |E_{\{3,r+1\}}| - |E_{\{3,3\}}| = n. \end{aligned}$$

Corollary 3.26. If SW_n^r graph, then

1. $M_1(SW_n^r) = n^2 + n(r+1) + nr(r+10),$ 2. $M_2(SW_n^r) = n^2(r+1) + 3nr(r+4),$ 3. $M_2^m(SW_n^r) = \frac{nr^2 + 4nr + 9}{9(r+1)},$ 4. $S_D(SW_n^r) = \frac{3n^2 + 3(r+1)^2 + nr(r+4)^2}{3(r+1)},$ 5. $H(SW_n^r) = \frac{2n}{(n+r+1)} + nr\left(\frac{r+10}{3(r+4)}\right),$ 6. $I_n(SW_n^r) = \frac{9nr(r+2)}{2(r+4)} + \left(\frac{n^2(r+1)}{(n+r+4)}\right),$ 7. $\chi_\alpha(SW_n^r) = nr \cdot 6^\alpha + nr(r+4)^\alpha + n(n+r+1)^\alpha,$ 8. $M_1^\alpha(SW_n^r) = 3nr \cdot 3^\alpha + n^{\alpha+1} + nr(r+1)^\alpha + n(r+1)^\alpha.$

Definition 14. Let $u_{i'}$ $(1 \le i \le n)$ be the vertices of the complete graph K_n . Let $W_r^i = C_r^i + K_1$ be the wheel with hubs w^i , $(1 \le i \le n)$, respectively. Let $u_i w^i$, $(1 \le i \le n)$ be an edge. The graph so constructed is called uniform n-wheel split graph KW (n, r), Figure 2.

Note: A uniform *n*-wheel split graph KW(n, r) is a graph in which the deletion of *n* edges $u_i w^i$, $(1 \le i \le n)$ partitions the graph into a complete graph and *n* independent wheels W_r . This graph can be thought of as a generalization of the standard split graph in the sense that the elements of the independent sets are replaced by wheels here.

Figure 3. Graphs *SW* (6,9) and *KDW*(6,9).

Theorem 3.27. Let
$$KW(n,r)$$
 be a uniform n-wheel split graph. Then
 $M(KW(n,r); x, y) = nrx^3y^3 + nrx^3y^{r+1} + nx^ny^{r+1} + {n \choose 2}x^ny^n$.

Proof. Let KW(n,r) uniform *n*-wheel split graph having n(r+2) vertices and $\frac{n}{2}(4r + n+1)$ edges. The edge partition of KW(n,r) is given by,

$$\begin{aligned} |E_{\{3,3\}}| &= |uv \in E(KW(n,r)): d_u = 3 \quad and \quad d_v = 3| = nr, \\ |E_{\{3,r+1\}}| &= |uv \in E(KW(n,r)): d_u = 3 \quad and \quad d_v = r+1| = nr, \\ |E_{\{n,r+1\}}| &= |uv \in E(KW(n,r)): d_u = n \quad and \quad d_v = r+1| = n, \\ |E_{\{n,n\}}| &= |uv \in E(KW(n,r)): d_u = n \quad and \quad d_v = n| \\ &= |E(KW(n,r)) - |E_{\{3,3\}}| - |E_{\{3,r+1\}}| - |E_{\{n,r+1\}}| = \binom{n}{2}. \end{aligned}$$

Corollary 3.28. If KW(n, r) be a uniform n-wheel split graph, then

1.
$$M_1(KW(n,r)) = n^3 + n(r+1) + nr(r+10),$$

2. $M_2(KW(n,r)) = \frac{n^4 - n^3 + 2n^2(r+1) + 6nr(r+4)}{2},$
3. $M_2^m(KW(n,r)) = \frac{1}{18} \left(\frac{9(r+3) + 2nr(r+4)}{(r+1)} - \frac{9}{n} \right),$
4. $S_D(KW(n,r)) = r - n + 1 + \frac{nr(r+4)^2}{3(r+1)} + n^2 \left(\frac{r+2}{r+1} \right),$
5. $H(KW(n,r)) = nr \left(\frac{r+10}{3(r+4)} \right) + n \left(\frac{n+r+3}{2(n+r+1)} \right) - \frac{1}{2},$
6. $I_n(KW(n,r)) = \frac{1}{4}n^2(n+3) + \frac{9nr}{2} - \frac{9nr}{(r+4)} - \frac{n^3}{(n+r+1)'},$
7. $\chi_\alpha(KW(n,r)) = nr \cdot 6^\alpha + nr(r+4)^\alpha + n(n+r+1)^\alpha + \binom{n}{2}(2n)^\alpha$
8. $M_1^\alpha(KW(n,r)) = nr \cdot 3^{\alpha+1} + n^{\alpha+1} + n(n-1)n^\alpha + nr(r+1)^\alpha + n(r+1)^\alpha.$

Definition 15. Let u_{i} , $(1 \le i \le n)$ be the vertices of a star S_{n-1} with a hub at x. Let $u_i w^i$, $(1 \le i \le n)$ be an edge. Let $W_r^i = C_r^i + K_1$ be wheels with hubs w^i , $(1 \le i \le n)$. The graph so obtained is denoted by SW (n, r), Figure 3.

Theorem 3.29. Let SW(n,r) be the graph having n(r + 2) + 1 vertices and 2n(r + 1) edges. Then

$$M(SW(n,r); x, y) = nx^2y^n + nx^2y^{r+1} + nrx^3y^3 + nrx^3y^{r+1}$$

Proof. Let SW(n, r) is a graph having n(r + 2) + 1 vertices and 2n(r + 1) edges. The edge partition of SW(n, r) is given by,

$$\begin{split} |E_{\{2,n\}}| &= |uv \in E(SW(n,r)): d_u = 2 \quad and \quad d_v = n| = n, \\ |E_{\{2,r+1\}}| &= |uv \in E(SW(n,r)): d_u = 2 \quad and \quad d_v = r+1| = n, \\ |E_{\{3,3\}}| &= |uv \in E(SW(n,r)): d_u = 3 \quad and \quad d_v = 3| = nr, \\ |E_{\{3,r+1\}}| &= |uv \in E(SW(n,r)): d_u = 3 \quad and \quad d_v = r+1| \\ &= |E(SW(n,r)) - |E_{\{2,n\}}| - |E_{\{2,r+1\}}| - |E_{\{3,3\}}| = nr. \end{split}$$

Corollary 3.30. If SW(n, r) be a graph, then

1.
$$M_1(SW(n,r)) = n^2 + n(r+5) + nr(r+10),$$

2. $M_2(SW(n,r)) = 2n^2 + 2n(r+1) + 3nr(r+4),$
3. $M_2^m(SW(n,r)) = \frac{2nr^2 + 8nr + 9(n+r+1)}{18(r+1)},$
4. $S_D(SW(n,r)) = \frac{3n^2(r+1) + 3n(r^2 + 2r+5) + 2(6(r+1) + nr(r+4)^2)}{6(r+1)},$
5. $H(SW(n,r)) = \frac{nr(r+10)}{3(r+4)} + \frac{2n(n+r+5)}{(n+2)(r+3)},$
6. $I_n(SW(n,r)) = \frac{2n^2}{n+2} + \frac{2n(r+1)}{r+3} + \frac{9nr(r+2)}{2(r+4)},$
7. $\chi_\alpha(SW(n,r)) = n(n+2)^\alpha + n(r+3)^\alpha + nr \cdot 6^\alpha + nr(r+4)^\alpha,$
8. $M_1^\alpha(SW(n,r)) = n2^{\alpha+1} + nr \cdot 3^{\alpha+1} + n^{\alpha+1} + n(r+1)^\alpha + nr(r+1)^\alpha.$

Definition 16. Let x_{i_i} $(1 \le i \le n)$ be the vertices of the complete graph K_n . Let $W_r^i = C_r^i + K_1$ be wheel with hub w^i_i $(1 \le i \le n)$. Let $x_i w^i_i$ $(1 \le i \le n)$ be an edge. Subdivide each edge $x_i w^i$ by u_{i_i} $(1 \le i \le n)$. The graph so obtained is denoted by KDW (n, r), Figure 3.

Theorem 3.31. Let KDW(n, r) be the graph having n(r + 3) vertices and $\frac{n}{2}(4r + n + 3)$. *Then*

$$M(KDW(n,r);x,y) = nx^{2}y^{n} + nx^{2}y^{r+1} + nrx^{3}y^{3} + nrx^{3}y^{r+1} + {\binom{n}{2}}x^{n}y^{n}$$

Proof. Let KDW(n, r) is a graph having n(r + 3) vertices and $\frac{n}{2}(4r + n + 3)$ edges. The edge partition of KDW(n, r) is given by,

$$\begin{aligned} |E_{\{2,n\}}| &= |uv \in E(KDW(n,r)): d_u = 2 \quad and \quad d_v = n| = n, \\ |E_{\{2,r+1\}}| &= |uv \in E(KDW(n,r)): d_u = 2 \quad and \quad d_v = r+1| = n, \\ |E_{\{3,3\}}| &= |uv \in E(KDW(n,r)): d_u = 3 \quad and \quad d_v = 3| = nr, \\ |E_{\{3,r+1\}}| &= |uv \in E(KDW(n,r)): d_u = 3 \quad and \quad d_v = r+1| = nr, \\ |E_{\{n,n\}}| &= |uv \in E(KDW(n,r)): d_u = n \quad and \quad d_v = n| \\ &= |E(KDW(n,r))| - |E_{\{2,n\}}| - |E_{\{2,r+1\}}| - |E_{\{3,3\}}| - |E_{\{3,r+1\}}| = \binom{n}{2}. \end{aligned}$$

Corollary 3.32. If KDW(n, r) be a graph, then

1.
$$M_1(KW(n,r)) = n^3 + n(r+5) + nr(r+10),$$

2. $M_2(KW(n,r)) = \frac{n(n(n(n-1)+4)+4)+nr(3r+14)}{2},$
3. $M_2^m(KW(n,r)) = \frac{9n^2-9(r+1)+2n(9(r+1)+nr(r+4))}{18n(r+1)},$
4. $S_D(KW(n,r)) = \frac{3(r+1)(3n^2+4)+3n(r^2+3)+2nr(r+4)^2}{6(r+1)},$
5. $H(KW(n,r)) = n\left(\frac{1}{2} + \frac{2}{n+2} + \frac{2}{r+3}\right) + nr\left(\frac{1}{3} + \frac{2}{r+4}\right) - \frac{1}{2},$
6. $I_n(KW(n,r)) = n\left(\frac{1}{2} + \frac{2}{n+2} - \frac{1}{4}\right) + \frac{2n(r+1)}{r+3} + \frac{9nr(2+r)}{2(r+4)},$
7. $\chi_\alpha(KW(n,r)) = n(n+2)^\alpha + n(r+3)^\alpha + nr \cdot 6^\alpha + nr(r+4)^\alpha + \binom{n}{2}(2n)^\alpha,$
8. $M_1^\alpha(KW(n,r)) = n \cdot 2^{\alpha+1} + nr \cdot 3^{\alpha+1} + n^{\alpha+1} + n(r+1)^\alpha + nr(r+1)^\alpha + (n-1)n^{\alpha+1}$

4. M-POLYNOMIAL OF SOME NANOSTRUCTURES

In science and technology, nanostructures play a vital role in small electronic devices to big satellites, pharmaceutical and medical treatments, communication and information, food science and so on. Among these, M-polynomial of dendrimers were studied in [33], Vphenylenic nanotubes and nanotori in [29] titania nanotubes in [34], Armchair polyhex nanotube and zig-zag polyhex nanotubes were encountered in [35]. In this paper, we consider $TUC_4C_8[p,q]$ nanotube, $TUC_4C_8[p,q]$ nanotorus, line graph of the subdivision graph of $TUC_4C_8[p,q]$ nanotube and $TUC_4C_8[p,q]$ nanotorus, V-tetracenic nanotube and V-tetracenic nanotorus and compute M-polynomial.

Let p and q denote the number of squares in a row and the number of rows of squares, respectively in nanotube and nanotorus of $TUC_4C_8[p,q]$. The nanotube and nanotorus of $TUC_4C_8[4,3]$ is shown in Figure 4 (a), (b) respectively. The line graph of subdivision graph of $TUC_4C_8[4,3]$ nanotube is given in Figure 5 (b). The line graph of

subdivision graph of $TUC_4C_8[4,2]$ nanotorus is given in Figure 6 (b). The structures V-tetracenic nanotube and V-tetracenic nanotorus are given in Figures 7 and 8, respectively.

Figure 4. (a) $TUC_4C_8[4,3]$ nanotube; (b) $TUC_4C_8[4,3]$ nanotorus.

Figure 5. (a) Subdivision graph of $TUC_4C_8[4,3]$ of nanotube; (b) line graph of the subdivision graph of $TUC_4C_8[4,3]$ of nanotube.

Figure 6. (a) Subdivision graph of $TUC_4C_8[4,2]$ of nanotorus; (b) line graph of the subdivision graph of $TUC_4C_8[4,2]$ of nanotorus.

We now obtain M-polynomial of these nanostructures as follows.

Theorem 4.1. Let $A = TUC_4C_8[p,q]$ nanotube. Then $M(A; x, y) = 4px^2y^3 + (6pq - 5p)x^3y^3.$

Proof. The $TUC_4C_8[p,q]$ nanotube has 4pq vertices and 6pq - p edges. The edge set of $TUC_4C_8[p,q]$ nanotube can be partitioned as,

$$\begin{aligned} |E_{\{2,3\}}| &= |uv \in E(A): d_u = 2 \quad and \quad d_v = 3| = 4p, \\ |E_{\{3,3\}}| &= |uv \in E(A): d_u = 3 \quad and \quad d_v = 3| \\ &= |E(A) - |E_{\{2,3\}}| = 6pq - 5p. \end{aligned}$$

Theorem 4.2. Let $B = TUC_4C_8[p,q]$ nanotorus. Then, $M(B; x, y) = 6pqx^3y^3$.

Proof. The $TUC_4C_8[p,q]$ nanotorus is a 3-regular graph with 6pq edges. Thus, from Lemma 2.1, M-polynomial of $TUC_4C_8[p,q]$ nanotorus is $M(B; x, y) = 6pqx^3y^3$.

Theorem 4.3. Let C be the line graph of subdivision graph of $TUC_4C_8[p,q]$ nanotube. Then

$$M(C; x, y) = 2px^2y^2 + 4px^2y^3 + p(18q - 11)x^3y^3$$

Proof. The line graph of subdivision graph of $TUC_4C_8[p,q]$ nanotube has 12pq - 2p vertices and 18pq - 5p edges. The edge partition of line graph of subdivision graph of $TUC_4C_8[p,q]$ nanotube is given by,

$$\begin{aligned} |E_{\{2,2\}}| &= |uv \in E(C): d_u = 2 \quad and \quad d_v = 2| = 2p, \\ |E_{\{2,3\}}| &= |uv \in E(C): d_u = 2 \quad and \quad d_v = 3| = 4p, \\ |E_{\{3,3\}}| &= |uv \in E(C): d_u = 3 \quad and \quad d_v = 3| \\ &= |E(C) - |E_{\{2,2\}}| - |E_{\{2,3\}}| = 18pq - 11p. \end{aligned}$$

Theorem 4.4. Let D be the line graph of subdivision graph of $TUC_4C_8[p,q]$ nanotorus. Then $M(D; x, y) = 18pqx^3y^3$.

Proof. The line graph of subdivision graph of $TUC_4C_8[p,q]$ nanotorus is a 3-regular graph with 18pq edges. Thus, from Lemma 2.1 we have, $M(D; x, y) = 18pqx^3y^3$.

Figure 7. V-tetracenic nanotube G[p, q].

Theorem 4.5. Let H be the V-tetracenic nanotube. Then

$$M(H; x, y) = 16px^2y^3 + (27q - 20)px^3y^3.$$

Proof. The V-tetracenic nanotube has 18pq vertices and 27pq - 4p edges. The edge partition of V-tetracenic nanotube is obtained as,

$$\begin{aligned} |E_{\{2,3\}}| &= |uv \in E(H): d_u = 2 \text{ and } d_v = 3| = 16p, \\ |E_{\{3,3\}}| &= |uv \in E(H): d_u = 3 \text{ and } d_v = 3| \\ &= |E(H)| - |E_{\{2,3\}}| = 27pq - 20p. \end{aligned}$$

Figure 8. V-tetracenic nanotorus G[p, q].

Theorem 4.6. Let I be the V-tetracenic nanotorus. Then $M(I; x, y) = 27pqx^3y^3$.

Proof. The proof follows from Lemma 2.1 as V-tetracenic nanotorus is 3-regular graph with 27pq edges.

We skip calculating topological indices of these nanostructures as it is routine work.

5. CONCLUDING REMARKS

In this paper, we have proposed new operators to derive general sum connectivity index and first general Zagreb index of a graph from the respective M-polynomial. Further, we have obtained M-polynomials of some graph operations and cycle related graphs. In addition, some degree based topological indices of these graphs are derived. The advantage of M-polynomial is that, from that one expression we can obtain several degree-based topological indices. It is very challenging to obtain new operators to derive all the degreebased topological indices from M-polynomial.

Acknowledgement. The authors are thankul to the referees for useful suggestions. B. Basavanagoud supported by University Grants Commission (UGC), Government of India, New Delhi, through UGC-SAP DRS-III for 2016-2021 : F.510 / 3 / DRS-III /2016 (SAP-I).

A. P. Barangi supported by Karnatak University, Dharwad, Karnataka, India, through University Research Studentship (URS), No.KU/Sch/URS/2017-18/471, dated 3rd July 2018. P. Jakkannavar supported by Directorate of Minorities, Government of Karnataka, Bangalore, through M. Phil/Ph. D Fellowship-2017-18: No. DOM/FELLOWSHIP/CR-29/2017-18, dated 9th August 2017.

REFERENCES

- 1. M. S. Anjum and M. U. Safdar, K Banhatti and K hyper-Banhatti indices of nanotubes, *Eng. Appl. Sci. Lett.* **2** (1) (2019) 19–37.
- 2. A. R. Ashrafi, T. Došlić and A. Hamzeh, Extremal graphs with respect to the Zagreb coindices, *MATCH Commun. Math. Comput. Chem.* **65** (2011) 85–92.
- 3. A. R. Ashrafi, B. Manoochehrian and H. Yousefi-Azari, On the PI polynomial of a graph, *Util. Math.* **71** (2006) 97–108.
- 4. B. Basavanagoud, A. P. Barangi and S. M. Hosamani, First neighbourhood Zagreb index of some nano structures, Proc. Inst. Appl. Math. **7** (2) (2018) 178–193.
- 5. B. Basavanagoud and P. Jakkannavar, Kulli-Basava indices of graphs, *Int. J. Appl. Eng. Res.* **14**(1) (2019) 325–342.
- 6. B. Basavanagoud and P. Jakkannavar, Computing leap Zagreb indices of generalized xyz-point-line transformation graphs $T^{xyz}(G)$ when z = +, J. Comp. Math. Sci. 9 (10) (2018) 1360–1383.
- B. Basavanagoud, Chitra E, On the leap Zagreb indices of generalized xyz-pointline transformation graphs T^{xyz}(G) when z = 1, *Int. J. Math. Combin.*, 2 (2018) 44-66.
- 8. B. Basavanagoud and P. Jakkannavar, M-polynomial and degree-based topological indices of graphs, *Electronic J. Math. Anal. Appl.*, **8** (1) (2020) 75–99.
- 9. G. G. Cash, Relationship between the Hosoya polynomial and the hyper-Wiener index, *Appl. Math. Lett.* **15** (2002) 893–895.
- 10. E. Deutsch and S. Klavžar, M-Polynomial and degree-based topological indices, *Iran. J. Math. Chem.* 6 (2) (2015) 93–102.
- 11. E. Deutsch and S. Klavžar, M-Polynomial revisited: Bethe cacti and an extension of Gutman's approach, *J. Appl. Math. Comput.* **60** (2019) 253–264.
- N. De, Computing reformulated first Zagreb index of some chemical graphs as an application of generalized hierarchical product of graphs. *Open J. Math. Sci.* 2 (1) (2018) 338–350.
- 13. N. De, Hyper Zagreb index of bridge and chain graphs, *Open J. Math. Sci.* 2 (1) (2018) 1–17.

- T. Došlić, Planar polycyclic graphs and their Tutte polynomials, J. Math. Chem. 51 (2013) 1599–1607.
- 15. E. J. Farrell, An introduction to matching polynomials, J. Combin. Theory Ser. B 27 (1979) 75–86.
- 16. S. Fajtlowicz, On conjectures of Graffiti II, Congr. Numer. 60 (1987) 187-197.
- 17. J. A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.* #DS6, (2018) 502 pages.
- 18. W. Gao, M. Asif and W. Nazeer, The study of honey comb derived network via topological indices, *Open J. Math. Anal.* **2** (2) (2018) 10–26.
- 19. I. Gutman, Molecular graphs with minimal and maximal Randić indices, *Croat. Chem. Acta* **75** (2002) 357–369.
- 20. I. Gutman, The acyclic polynomial of a graph, *Publ. Inst. Math.* **22** (36) (1979) 63–69.
- 21. I. Gutman, Degree-based topological indices, *Croat. Chem. Acta* **86** (2013) 351–361.
- 22. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.
- 23. I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals, XII. Acyclic polyenes, *J. Chem. Phys.* **62** (1975) 3399–3405.
- 24. F. Harary, Graph Theory, Addison-Wesely, Reading, 1969.
- 25. F. Hassani, A. Iranmanesh and S. Mirzaie, Schultz and modified Schultz polynomials of C_{100} fullerene, *MATCH Commun. Math. Comput. Chem.* **69** (2013) 87–92.
- 26. H. Hosoya, On some counting polynomials in chemistry, *Discrete Appl. Math.* **19** (1988) 239–257.
- 27. I. Javaid and S. Shokat, On the partition dimension of some wheel related graphs, *J. Prime Res. Math.* **4** (2008) 154–164.
- S. M. Kang, W. Nazeer, W. Gao, D. Afzal and S. N. Gillani, M-polynomials and topological indices of dominating David derived networks, *Open Chem.* 16 (2018) 201–213.
- Y. C. Kwun, M. Munir, W. Nazeer, R. Rafique and S. M. Kang, M-polynomials and topological indices of V-phenylenic nanotubes and nanotori, *Sci. Reports* 7 (2017) Art. 8756.
- 30. Y. Kins, Radio labeling of certain graphs, Ph.D. Thesis, University of Madras, India, November 2011.
- 31. X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, *MATCH Commun. Math. Comput. Chem.* **50** (2004) 57–62.

- 32. X. Li and Y. Shi, A survey on the Randić index, *MATCH Commun. Math. Comput. Chem.* **59** (2008) 127–156.
- 33. M. Munir, W. Nazeer, S. Rafique and S. M. Kang, M-polynomial and related topological indices of nanostar dendrimers, *Symmetry* **8** (2016) 97.
- 34. M. Munir, W. Nazeer, S. Rafique, A. R. Nizami and S. M. Kang, M-polynomial and degree-based topological indices of titania nanotubes, *Symmetry* **8** (2016) 117.
- 35. M. Munir, W. Nazeer, S. Rafique, A. R. Nizami and S. M. Kang, M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes *Symmetry*, **8** (2016) 149.
- 36. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- M. Riaz, W. Gao and A. Q. Baig, M-Polynomials and degree-based Topological Indices of Some Families of Convex Polytopes. *Open J. Math. Sci.* 2 (1) (2018) 18–28.
- 38. S. Roy, Packing chromatic number of certain fan and wheel related graphs, *AKCE Int. J. Graphs Comb.* **14** (2017) 63–69.
- Z. Shao, A. R. Virk, M. S. Javed, M. A. Rehman and M. R. Farahani, Degree based graph invariants for the molecular graph of Bismuth Tri-Iodide, *Eng. Appl. Sci. Lett.* 2 (1) (2019) 1–11.
- 40. H. Siddiqui and M. R. Farahani, Forgotten polynomial and forgotten index of certain interconnection networks, *Open J. Math. Sci.* **1** (1) (2017) 44–59.
- 41. Z. Tang, L. Liang and W. Gao, Wiener polarity index of quasi-tree molecular structures, *Open J. Math. Sci.* **2** (1) (2018) 73–83.
- 42. S. K. Vaidyaa and M. S. Shukla, b-Chromatic number of some wheel related graphs, *Malaya J. Math.* **2** (4) (2014) 482–488.
- 43. A. R. Virk, M. N. Jhangeer and M. A. Rehman, Reverse Zagreb and reverse hyper-Zagreb indices for silicon carbide Si₂C₃I[r,s] and Si₂C₃II[r,s], Eng. Appl. Sci. Lett. 1 (2) (2018) 37–50.
- 44. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947) 17–20.
- 45. L. Yan, M. R. Farahani and W. Gao, Distance-based indices computation of symmetry molecular structures, *Open J. Math. Sci.* **2** (1) (2018) 323–337.
- 46. H. Zhang, F. Zhang, The Clar covering polynomial of hexagonal systems I, *Discrete Appl. Math.* **69** (1996) 147–167.