Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific graphs.
REYHANI, M. H. , ALIKHANI, S. and IRANMANESH, M. A. (2013). On the Roots of Hosoya Polynomial of a Graph. Iranian Journal of Mathematical Chemistry, 4(2), 231-238. doi: 10.22052/ijmc.2013.5296
MLA
REYHANI, M. H., , ALIKHANI, S. , and IRANMANESH, M. A.. "On the Roots of Hosoya Polynomial of a Graph", Iranian Journal of Mathematical Chemistry, 4, 2, 2013, 231-238. doi: 10.22052/ijmc.2013.5296
HARVARD
REYHANI, M. H., ALIKHANI, S., IRANMANESH, M. A. (2013). 'On the Roots of Hosoya Polynomial of a Graph', Iranian Journal of Mathematical Chemistry, 4(2), pp. 231-238. doi: 10.22052/ijmc.2013.5296
CHICAGO
M. H. REYHANI , S. ALIKHANI and M. A. IRANMANESH, "On the Roots of Hosoya Polynomial of a Graph," Iranian Journal of Mathematical Chemistry, 4 2 (2013): 231-238, doi: 10.22052/ijmc.2013.5296
VANCOUVER
REYHANI, M. H., ALIKHANI, S., IRANMANESH, M. A. On the Roots of Hosoya Polynomial of a Graph. Iranian Journal of Mathematical Chemistry, 2013; 4(2): 231-238. doi: 10.22052/ijmc.2013.5296