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ABSTRACT 

 
Let G = (V, E) be a simple graph. Hosoya polynomial of G is 

)v,u(d
)G(V}v,u{ x=)x,G(H   , where, d(u ,v) denotes the distance between vertices u 

and v. As is the case with other graph polynomials, such as chromatic, independence and 
domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In 
this paper we study the roots of Hosoya polynomials of some specific graphs. 

Keywords: Hosoya polynomial, root, path, cycle. 

 
 
1.  INTRODUCTION 

  
  A simple graph G = ( V, E ) is a finite nonempty set V(G) of objects called vertices 

together with a (possibly empty) set E(G) of unordered pairs of distinct vertices of G  called 
edges. In chemical graphs, the vertices of the graph correspond to the atoms of the 
molecule, and the edges represent the chemical bonds. 

The Hosoya polynomial of a graph is a generating function about distance 
distributing, introduced by Hosoya [10] in 1988 and for a connected graph G  is defined as:  

 ,x=)x,G(H )v,u(d

)G(V}v,u{



 

Where d (u ,v) denotes the distance between vertices u and v. This polynomial has 
computed for some nano-structures, e.g. [3, 16]. The Hosoya polynomial has many 
chemical applications [7, 8, 9]. Especially, the two well-known topological indices, i.e. 
Wiener index and hyper-Wiener index, can be directly obtained from the Hosoya 
polynomial. 

The Wiener index of a connected graph G is denoted by )G(W , is defined as the 
sum of distances between all pairs of vertices in G  ([11]), i.e.,  
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 ).v,u(d=)x,G(W
)G(V}v,u{




 

The hyper-Wiener index is denoted by )(GWW  and defined as follows:  

 ).v,u(d
2
1)v,u(d

2
1=)G(WW 2

)G(V}v,u{)G(V}v,u{



 

Note that the first derivative of the Hosoya polynomial at 1=x  is equal to the Wiener 
index:  

 .|))x,G(H(=)G(W 1=x  
Also we have the following relation: 

 
 .|))x,G(xH(

2
1=)G(WW 1=x  

Graph polynomials are a well-developed area useful for analyzing properties of 
graphs. For some graph polynomials, their roots have attracted considerable attention, both 
for their own sake, as well for what the nature and location of the roots imply. Woodal [17] 
explored the zeros and zero-free regions of chromatic and flow polynomials. Also, the zero 
distribution of chromatic and flow polynomials of graphs and characteristic polynomials of 
matroids have been examined by Jackson [12]. Also the zeros of independence polynomials 
have been studied in [2, 4]. Finally the roots of domination polynomial has considered in 
some papers, e.g. [1, 5]. 

In this paper we study the roots of Hosoya polynomial of specific graphs. We 
denote the roots of Hosoya polynomial of graph G  by )).x,G(H(Z   

 
2. MAIN RESULTS 
 
In this section we consider some specific graphs and obtain the roots of their Hosoya 
polynomials. Let nn P,S  and nC  denote the star, path and cycle with n  vertices, 
respectively. A simple calculation gives the following theorem: 

  
Theorem 1. 

1.  .x1)n(x
2

1n
=)x,S(H 2

n 






 
 

 

2.  .x1)n(...x2x=)x,P(H 2n1n
n    
 

3.  .nx)xxx)(n(2=)x,C(H n1n2
n2    

 

 4.  ).xxx1)(n(2=)x,C(H n2
1n2    
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Theorem 2 . For 3n ,  

 }.
n2

2{0,=))x,S(H(Z n 
 

 
Proof. It follws from Theorem 1(i).                                                                                     ■ 
 
Here we state the following theorem: 

  
Theorem 3 . ([14]) Let 0

1n
1n

n
n azaza=)z(f  

  , n,1,=i,ai R  be a 
polynomial with real coefficients satisfying 0>aaa n10   . Then, no zeros of )z(f  
lie in 1}|<z|,z{ C . 

 

 The following theorem is an consequence of Theorem 3, see Figure 1. 
 

Theorem 4 . )x,P(H n  and )x,C(H n2  do not possess zeros in 1}|<z|,z{ C .  
 

 
 

Figure 1. Roots of Hosoya polynomial of 100P  and 200C , respectively. 
  

 We recall that  the n -th root of unity are roots n
ik2

e


of equation 1xn  . Now we 
state and prove the following theorem: 

  
Theorem 5 . Let aazazaz=)z(f 1nn    , 0a , be a complex polynomial. All 
zeros of )z(f  lie on the unit circle. 
 

Proof. We have  
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 ),wz(a=
1z

1)z(a=)z(f in

1=i

1n





 

where w  denotes the 1)( n -th root of unity. Since all roots of unity lie on the unit circle, 
so we have the result.                                                                                                             ■ 
 
Corollary 1: All roots of )x,C(H 1n2  lie on the unit circle.  
 
Proof. It follows from Theorems 1 and 5.                                                                             ■ 

 
 

Figure 2. Roots of )x,C(H 201 . 
 

 Figure 2 shows roots of )x,C(H 201 . We need the following theorem: 
 

Theorem 6 . ([13]) Let 0
1n

1n
n

n azaza=)z(f  
  , Ria , be a polynomial with 

real coefficients. All zeros of )(zf  lie in the closed disk }r|z|,z{ C  where 1>r  denotes 

the largest positive root of the equation 0=2|)a|z|a1)(|z( 2
2

2
1nn

2   , and 

2
1

2
1jnjnn

1=j2 ))aa((
2

1=   .   

 
Theorem 7. All zeros of )x,C(H n2  lie in the closed disk 2.77321}|z|,z{ C . 
  
Proof. By Theorem 6, since we have n=an  and n2=ai , 1)ni(1  , so n2=2 . 

Now we have 0=n4)n2nz1)(z( 222  . The largest positive root of this equation is 
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2.77321 . So, we have the result as desired.                                                                           ■ 
 
 The join 21 GG   of two graph 1G  and 2G  with disjoint vertex sets 1V  and 2V and 
edge sets 1E and 2E is the graph union 21 GG   together with all the edges joining 1V  and 

2V . 
 

Theorem 8 .  Let in  and im  be order and size of graphs iG  1,2)=(i , respectively. Then  

.
)mm(

2
n

2
n

nnmm0,=))x,GG(H(Z

21
21

2121
21







































  

Proof. Since mnxxxGEGEx
nm

xGGH 
















 1)(|))(||)((|)

22
(=),( 21

2
21  (see 

[15]), we have the result.                                                                                                        ■ 
 

 The following corollary is an immediate consequence of Theorem 8: 
 

Corollary 2. 
1. The roots of Hosoya polynomial of complete bipartite graph nmK ,  is 

.

2
m

2
n

mn0,=))x,K(H(Z n,m





































  

2. The roots of Hosoya polynomial of wheel graph nW  is  

 .
1)n(

2
1n

n220,=))x,W(H(Z n




























 
  

Proof.  
 1.  Since nmn,m KK=K  , we have the result by Theorem 8.  

 2.  Since 1n1n CK=W  , we have the result by Theorem 8.                                 ■ 
 

For two graphs G and H, let G[H] be the graph with vertex set V (G)×V (H) and 
such that vertex (a, x) is adjacent to vertex (b, y) if and only if a is adjacent to b (in G) or a 
= b and x is adjacent to y (in H). The graph G[H] is the lexicographic product (or 
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composition) of G and H, and can be thought of as the graph arising from G and H by 
substituting a copy of H for every vertex of G. We need the following theorem: 
 

Theorem 9.  ([15]) Let 1G  and 2G  be two graphs of order m  and n , respectively. The 
Hosoya polynomial of ]G[G 21  is  

 1)x(x|)G(E|mx
2
n

m)x,G(Hn=)x],G[G(H 2
2

1
2

21 







  

 

Corollary 3. Let 1G  and 2G  be two graphs of order m  and n , respectively. The only 

common root of )x,G(H 1  and )x],G[G(H 21  is 











2
n

|)G(E|

|)G(E|

2

2 .   

Proof. Let   be a common root of )x,G(H 1  and )x],G[G(H 21 . Therefore by Theorem 9 

we have |)G(E|=|)G(E|
2
n

22 














 . So we have the result.                                          ■ 

 

 Here we shall consider the roots of Hosoya polynomial of another specific graph. 
Consider the graph mK  and m  copies of nK . The graph )n,m(Q  is obtained by 
identifying each vertex of mK  with a vertex of a unique nK  (see [6]). We have shown the 
graph (6,4)Q  in Figure 3. 

 

 
Figure 3.  (6,4)Q . 

 
Theorem 10 .  ([6]) The Hosoya polynomial of )n,m(Q  is  
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 3222 x1)n1)(m(m
2
1x1)n1)(m(mx1)nnm(m

2
1

  

  
 The following theorem is about roots of Hosoya polynomial of )n,m(Q : 
 

Theorem 11 . All non-zero roots of )x),n,m(Q(H  are complex.   
 

Proof. By Theorem 10 we have the following equation:  

 0.=1)nnm(x1)n1)(m2(x1)n1)(m( 222   

It is easy to see that 1)m(1)n(n4= 3  , where  is the discriminant of the quadratic 
equation. Since Nn,m , we have 0< . Therefore we have the result.                             ■ 
 
 We have seen that there are graphs whose their nonzero roots of Hosoya polynomial 
are complex. We think that the following problem has worth to consider: 
 

Problem.  Characterize graphs whose nonzero roots of their Hosoya polynomial have are 
complex. 
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