[1] M. Bär, Reaction-diffusion patterns and waves: From chemical reactions to cardiac arrhythmias, Spirals and Vortices: In Culture, Nature, and Science (2019) 239–251, https://doi.org/10.1007/978-3-030-05798-5_14.
[2] V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. M. Saad, M. A. Khan and P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: a fractional calculus approach, Phys. A 523 (2019) 48–65,
https://doi.org/10.1016/j.physa.2019.02.018.
[3] A. Choucha, S. Boulaaras, R. Jan and S. Jain, Asymptotic behavior for a viscoelastic wave equation with acoustic and fractional conditions combined by nonlinear time-varying delay in boundary feedback in the presence of logarithmic source term, Math. Methods Appl. Sci. (2025) https://doi.org/10.1002/mma.10687.
[4] P. Agarwal and A. A. El-Sayed, Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation, Phys. A 500 (2018) 40–49, https://doi.org/10.1016/j.physa.2018.02.014.
[5] S. Rekhviashvili, A. Pskhu, P. Agarwal and S. Jain, Application of the fractional oscillator model to describe damped vibrations, Turk. J. Phys. 43 (2019) 236–242, https://doi.org/10.3906/fiz-1811-16.
[6] A. R. Hadhoud, A. A. M. Rageh and P. Agarwal, Numerical method for solving twodimensional of the space and space-time fractional coupled reaction-diffusion equations, Math. Methods Appl. Sci. 46 (2023) 6054–6076, https://doi.org/10.1002/mma.8891.
[7] W. W. Mohammed, C. Cesarano and F. M. Al-Askar, Solutions to the (4+1)-dimensional time-fractional Fokas equation with m-truncated derivative, Mathematics 11 (2023) #194, https://doi.org/10.3390/math11010194.
[8] M. O. Gani and T. Ogawa, Instability of periodic traveling wave solutions in a modified FitzHugh–Nagumo model for excitable media, Appl. Math. Comput. 256 (2015) 968–984, https://doi.org/10.1016/j.amc.2015.01.109.
[9] M. O. Gani and T. Ogawa, Stability of periodic traveling waves in the Aliev–Panfilov reaction–diffusion system, Commun. Nonlinear Sci. Numer. Simul. 33 (2016) 30–42, https://doi.org/10.1016/j.cnsns.2015.09.002.
[10] M. O. Gani, M. H. Kabir and T. Ogawa, Inhibitor-induced wavetrains and spiral waves in an extended FitzHugh–Nagumo model of nerve cell dynamics, Bull. Math. Biol. 84 (2022) #145, https://doi.org/10.1007/s11538-022-01100-9.
[11] G. Bordyugov, N. Fischer, H. Engel, N. Manz and O. Steinbock, Anomalous dispersion in the Belousov–Zhabotinsky reaction: Experiments and modeling, Phys. D: Nonlinear Phenom. 239 (2010) 766–775, https://doi.org/10.1016/j.physd.2009.10.022.
[12] I. R. Epstein and K. Showalter, Nonlinear chemical dynamics: oscillations, patterns, and chaos, J. Phys. Chem. 100 (1996) 13132–13147, https://doi.org/10.1021/jp953547m.
[13] V. K. Vanag and I. R. Epstein, Design and control of patterns in reaction-diffusion systems, Chaos 18 (2008) #026107, https://doi.org/10.1063/1.2900555.
[14] S. M. Bierman, J. P. Fairbairn, S. J. Petty, D. A. Elston, D. Tidhar and X. Lambin, Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.), Am. Nat. 167 (2006) 583–590, https://doi.org/10.1086/501076.
[15] J. A. Sherratt and M. J. Smith, Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models, J. R. Soc. Interface. 5 (2008) 483–505, https://doi.org/10.1098/rsif.2007.1327.
[16] E. Ranta and V. Kaitala, Travelling waves in vole population dynamics, Nature 390 (1997) #456,
https://doi.org/10.1038/37261.
[17] V. Steinberg, J. Fineberg, E. Moses and I. Rehberg, Pattern selection and transition to turbulence in propagating waves, Phys. D: Nonlinear Phenom. 37 (1989) 359–383, https://doi.org/10.1016/0167-2789(89)90143-7.
[18] M. Van Hecke, Coherent and incoherent structures in systems described by the 1D CGLE: Experiments and identification, Phys. D 174 (2003) 134–151, https://doi.org/10.1016/S0167-2789(02)00687-5.
[19] W. Van Saarloos, Front propagation into unstable states, Phys. Rep. 386 (2003) 29–222, https://doi.org/10.1016/j.physrep.2003.08.001.
[20] R. E. Lee DeVille and E. Vanden-Eijnden, Wavetrain response of an excitable medium to local stochastic forcing, Nonlinearity 20 (2007) 51–74, https://doi.org/10.1088/0951-7715/20/1/004.
[21] J. A. Sherratt and G. J. Lord, Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments, Theor. Popul. Biol. 71 (2007) 1–11, https://doi.org/10.1016/j.tpb.2006.07.009.
[22] A. K. Dutt, Turing pattern amplitude equation for a model glycolytic reaction-diffusion system, J. Math. Chem. 48 (2010) 841–855, https://doi.org/10.1007/s10910-010-9699-x.
[23] T. Kolokolnikov, T. Erneux and J. Wei, Mesa-type patterns in the onedimensional Brusselator and their stability, Phys. D 214 (2006) 63–77, https://doi.org/10.1016/j.physd.2005.12.005.
[24] J. Tzou, B. J. Matkowsky and V. A. Volpert, Interaction of Turing and Hopf modes in the superdiffusive Brusselator model, Appl. Math. Lett. 22 (2009) 1432–1437, https://doi.org/10.1016/j.aml.2009.01.054.
[25] L. Yang, A. M. Zhabotinsky and I. R. Epstein, Stable squares and other oscillatory Turing patterns in a reaction-diffusion model, Phys. Rev. Lett. 92 (2004) #198303, https://doi.org/10.1103/PhysRevLett.92.198303.
[26] B. Li and M.-x. Wang, Diffusion-driven instability and Hopf bifurcation in Brusselator system, Appl. Math. Mech. 29 (2008) 825–832, https://doi.org/10.1007/s10483-008-0614-y.
[27] A. Sukhtayev, K. Zumbrun, S. Jung and R. Venkatraman, Diffusive stability of spatially periodic solutions of the Brusselator model, Comm. Math. Phys. 358 (2018) 1–43, https://doi.org/10.1007/s00220-017-3056-x.
[28] A. K. M. Nazimuddin, M. H. Kabir and M. O. Gani, Oscillatory wave patterns and spiral breakup in the Brusselator model using numerical bifurcation analysis, J. Comput. Sci. 62 (2022) #101720, https://doi.org/10.1016/j.jocs.2022.101720.
[29] A. K. M. Nazimuddin and M. S. Ali, Pattern formation in the Brusselator model using numerical bifurcation analysis, Punjab Univ. J. Math. 51 (2019) 31–39.
[30] A. K. M. Nazimuddin, M. H. Kabir and M. O. Gani, Spiral patterns and numerical bifurcation analysis in a three-component Brusselator model for chemical reactions, Math. Comput. Simulation 203 (2023) 577–591,
https://doi.org/10.1016/j.matcom.2022.07.008.
[31] O. S. Akhmedov, A. A. Azamov and G. I. Ibragimov, Four-dimensional Brusselator model with periodical solution, Ural Math. J. 6 (2020) 3–15, http://doi.org/10.15826/umj.2020.1.001.
[32] I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. II, J. Chem. Phys. 48 (1968) 1695–1700, https://doi.org/10.1063/1.1668896.
[33] B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, Theory and Application of Hopf Bifurcation, Cambridge Univ. Press, Cambridge, 1981.
[34] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction, Cambridge University Press, 2005.