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Abstract

In the kinetic theory of chemical processes, cyclic reactions
play a significant role. This study addresses a four-component
non-linear Brusselator reaction-diffusion model for cyclic reac-
tions to investigate the existence of periodic wave solutions to
the model. The local behavior of the non-diffusive model solu-
tions is investigated first. Then, the existence and uniqueness of
the solution in the diffusive model are discussed. Furthermore,
the emergence of periodic wave solutions in the diffusive model
is also analyzed analytically. To validate our theoretical investi-
gation, we also perform some numerical simulations in one and
two space dimensions of the diffusive model. To demonstrate
the originality of this study, we conclude by summarizing our
findings and drawing comparisons with previous research.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction
A theoretical structure for chemical processes called the Brusselator model can exhibit sev-
eral dynamical states based on the parameters governing the diffusion coefficients and reaction
rates. A reaction-diffusion (R-D) system can emerge from a homogeneous state and exhibit
periodic patterns in either a stable or dynamic environment [1]. Numerous dynamical models
associated with wave phenomena have been studied in recent years [2–10]. Particularly within
the landscape of chemical R-D patterns, there is a rich tapestry of mathematical intrigue and
real-world relevance. Analysis of the PWS was presented for chemical reactions [11–13], eco-
logical [14–16], physical [17–19], and biological systems [20, 21]. The creation of patterns in a
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number of attributes was examined using the Brunsselator model in [22–25]. The PWS stability
analysis for the diffusive 2-component Brusselator model was examined in [26, 27]. In a recent
study, Nazimuddin et al. [28, 29] analyzed a diffusive 2-component Brusselator system to show
the instability of PWS. Also, a Brusselator model related to three components is investigated in
[30] to reveal the instability of PWS. A novel non-diffusive four-component Brusselator model
was initially suggested in [31], where the authors demonstrated that the non-diffusive model
experienced a closed trajectory. No further investigations using that model have been published
since then.

In this paper, we investigate this novel four-component Brusselator model incorporating
diffusion terms. We investigate the existence of PWS in the diffusive four-component chemical
Brusselator model. The PWS of the R-D model is strongly associated with the formation of
periodic patterns in the two-space dimension. The non-diffusive system is analyzed first by
ignoring diffusion terms. The persistence of a stable limit cycle is then proved analytically and
numerically utilizing the diffusive four-component Brusselator model. A comparison table has
also been presented to show the originality of this research work.

Section 2 of this paper describes a diffusive four-component Brusselator model. The inves-
tigation of the local behavior of solutions in the non-diffusive system is presented in Section 3.
In Section 4, the persistence and uniqueness of solutions in the diffusive model are illustrated.
In Section 5, the limit cycle behavior in the diffusive model is discussed. Section 6 presents the
numerical simulation result of the diffusive model. We discuss the originality of the ongoing
research in Section 7. Our investigation concludes with the new discoveries presented in Section
8.

2 Diffusive four-component Brusselator model
Dissipative structures in chemical systems were the subject of numerous investigations in the
1960s. Four intermediate reaction processes explored by Prigogine and Lefever [32] can reflect
the mechanism of the cyclic reaction, as well as the widely recognized Brusselator model:

P → X,

Q+X → Y +R,

2X + Y → 3X,

X → S.

The concentrations of the inputs, P, Q; outputs, R, S; and two intermediate reactants, X,Y ,
are involved in the chemical processes mentioned above. Following is the dimensionless version
of the two-component diffusive Brusselator system.{

∂α
∂t = d1∇2α+ a1 − (b1 + 1)α+ α2β,
∂β
∂t = d2∇2β + bα− α2β.

(1)

For the two-component diffusive Brusselator model (1), the instability of PWS was investigated
in [28, 29].
The following is the possible representation of the three-component diffusive Brusselator model.

∂α
∂t = d1∇2α+ a1 − (b1 + γ)α+ α2β,
∂β
∂t = d2∇2β + αγ − α2β,
∂γ
∂t = d3∇2γ − αγ + c1.

(2)
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In [30], the stability analysis of PWS in the three-component diffusive Brusselator model (2)
was investigated. The diffusive dimensionless form of the four-component Brusselator model
may be obtained by adding diffusion terms to the non-diffusive four-component Brusselator
system [31]. 

∂α
∂t = d1∇2α+ a1δ − (b1 + γ)α+ α2β,
∂β
∂t = d2∇2β + αγ − α2β,
∂γ
∂t = d3∇2γ − αγ + c1,
∂δ
∂t = d4∇2δ − a1δ + αγ,

(3)

where the input concentrations are denoted by α, β, γ, and δ. The rate constants are represented
by the kinetic parameters a1, b1, and c1.

3 Local dynamical behavior in the non-diffusive model
The following collection of ordinary differential equations (ODEs) generated after eliminating
diffusion elements from the diffusive model (3):

dα
dt = a1δ − (b1 + γ)α+ α2β,
dβ
dt = αγ − α2β,
dγ
dt = −αγ + c1,
dδ
dt = −a1δ + αγ.

(4)

For system (4), (α, β, γ, δ) = ( c1b1 ,
b21
c1
, b1,

c1
a1

) is the equilibrium point. The stable limit cycle
solution (α, β, γ, δ) of Equation (4) suggests a periodic solution. When a1 = 1, b1 = 1, and
a certain range of values of c1 [31], the system (4) displays a periodic solution. Our updated
version of Equation (4) is as follows:


dα
dt = δ − (1 + γ)α+ α2β,
dβ
dt = αγ − α2β,
dγ
dt = −αγ + c1,
dδ
dt = −δ + αγ.

(5)

The system (5) has a single equilibrium point, (c1,
1
c1
, 1, c1). The stability matrix of the system

(5) has the characteristic equationK4+K3(1+c1+c21)+(−1+2c21+c31)K2+(−c1+2c31)K+c31 = 0.
For the system (5), we detect a hopf bifurcation point for c1 = 1.17308 (approximately). For
c1 > 1.17308, the equilibrium point (c1,

1
c1
, 1, c1) of the system (5) is stable and for c1 < 1.17308,

the equilibrium point (c1,
1
c1
, 1, c1) of the system (5) is unstable. Thus, we obtain a closed

trajectory of the non-diffusive four-component Brusselator model (5).
Figure 1 displays an unstable solution profile for the system (5), where c1 serves as a free
parameter. It can be seen in Figure 1, we take c1 = 1.12 and get an unstable solution profile.
As a result, we find a closed trajectory of (5). An open trajectory of (5) is therefore obtained
by taking c1 = 1.2, which gives us a stable fixed point and is shown in Figure 2. Additionally,
we note that periodic solutions with low amplitude are produced when the value of c1 is close
to 1.17308, while periodic solutions with large amplitude are produced when the value of c1 is
decreased from this value.
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Figure 1: Solution behavior of the system (5), where a1 = 1, b1 = 1, and c1 = 1.12, (a) time
series solution; (b) possible phase portraits.
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Figure 2: Solution behavior of the system (5), where a1 = 1, b1 = 1, and c1 = 1.2, (a) time
series solution; (b) possible phase portraits.
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4 Emergence and uniqueness of solutions in the diffusive
model

Let us consider the diffusive four-component Brussselator model stated in (3). Firstly, we
introduce the Riemann-Liouville integral operator in Equation (3), we get
α(x, t)− α(x, 0) = I1t (d1 αxx + a1δ − (b1 + γ)α+ α2β)

=

∫ t

0

(d1 αxx + a1δ(x, t)− (b1 + γ(x, t))α(x, t) + α2(x, t)β(x, t))ds, (6)

β(x, t)− β(x, 0) =

∫ t

0

(d2 βxx + α(x, t)γ(x, t)− α2(x, t)β(x, t))ds, (7)

γ(x, t)− γ(x, 0) =

∫ t

0

(d3 γxx − α(x, t)γ(x, t) + c1)ds, (8)

and

δ(x, t)− δ(x, 0) =

∫ t

0

(d4 δxx − a1δ(x, t) + α(x, t)γ(x, t))ds. (9)

Let,

L1(t, α(x, t)) = d1αxx + a1δ − (b1 + γ)α+ α2β, (10)

L2(t, β(x, t)) = d2βxx + αγ − α2β, (11)

L3(t, γ(x, t)) = d3γxx − αγ + c1, (12)

and

L4(t, δ(x, t)) = d4δxx − a1δ + αγ. (13)

Now, if α(x, t), α1(x, t), β(x, t), β1(x, t), γ(x, t), γ1(x, t), δ(x, t), and δ1(x, t) are continuous
functions and are in ω2 ((0, 1)× (0, 1)), then there exists t1 > 0, t2 > 0, t3 > 0, and t4 > 0 such
that 

‖ αxx − (α1)xx ‖≤ t1 ‖ α− (α1) ‖,
‖ βxx − (β1)xx ‖≤ t2 ‖ β − (β1) ‖,
‖ γxx − (γ1)xx ‖≤ t3 ‖ γ − (γ1) ‖,
‖ δxx − (δ1)xx ‖≤ t4 ‖ δ − (δ1) ‖ .

(14)

Now, we will prove that L1(t, α(x, t)), L2(t, β(x, t)), L3(t, γ(x, t)), and L4(t, δ(x, t)) accomplish
the Lipschitz condition. We have
‖ L1(t, α)− L1(t, α1) ‖=‖ d1αxx + a1δ − (b1 + γ)α+ α2β − d1(α1)xx − a1δ

+(b1 + γ)α1 − α2
1β ‖

≤| d1 | t1 ‖ α− (α1) ‖ +(| b1 | + | γ |) ‖ α− (α1) ‖ + | β |‖ α2 − α2
1 ‖
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≤ (k1t1 + (k2 + k3) + k4(m1 +m2)) ‖ α− (α1) ‖ .

Here, | d1 |≤ k1, | b1 |≤ k2, | γ |≤ k3, | β |≤ k4, | α |≤ m1, and | α1 |≤ m2.

Considering, N1 = k1t1 + (k2 + k3) + k4(m1 +m2), we get

‖ L1(t, α)− L1(t, α1) ‖≤ N1 ‖ α− α1 ‖ . (15)

Similarly, for the functions β(x, t), γ(x, t), and δ(x, t), we can write
‖ L2(t, β)− L2(t, β1) ‖≤ N2 ‖ β − β1 ‖,
‖ L3(t, γ)− L3(t, γ1) ‖≤ N3 ‖ γ − γ1 ‖,
‖ L4(t, δ)− L4(t, δ1) ‖≤ N4 ‖ δ − δ1 ‖,

(16)

where N2 = l1t2 +m2
1, N3 = l2t3 +m1, and N4 = l3t4 +m3.

Therefore, the Lipschitz condition is accomplished by the kernels L1(t, α), L2(t, β), L3(t, γ),
and L4(t, δ).

5 Emergence of limit cycle solution in the diffusive model

This section analytically examines the presence of a stable closed trajectory in the diffusive
model (3). One possible matrix form for the equation (3) is as follows:

St = MSxx +N(S),

where

S =


α
β
γ
δ

, M =


d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

 , and N(S) =


a1δ − (b1 + γ)α+ α2β

αγ − α2β
−αγ + c1
−a1δ + αγ

 .
Consider that (3) has a spatially homogeneous positive equilibrium point denoted by S∗ =
(α∗, β∗, γ∗, δ∗), which is unique and is obtained by setting N(S) = 0. Let us now investigate
the emergence of Hopf instability of the spatially constant steady-state S∗ under the spatially
homogeneous perturbation S = S∗ + Ŝeλt+ipx, where λ act as the growth factor and p act as
the wave number. The linearized version’s characteristic matrix at the equilibrium point S∗ is
as follows:

J∗ =


0 c21/b

2
1 −c1/b1 a1

−b1 −c21/b21 c1/b1 0
−b1 0 −c1/b1 0
b1 0 c1/b1 −a1

 .
The characteristic polynomial can be found as follows:∣∣∣∣∣∣∣∣

λ− p2d1 c21/b
2
1 c1/b1 −a1

b1 c21/b
2
1 + λ− p2d2 −c1/b1 0

b1 0 c1/b1 + λ− p2d3 0
−b1 0 −c1/b1 a1 + λ− p2d4

∣∣∣∣∣∣∣∣ .
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The corresponding characteristic equation can be expressed in the following explicit form.

S(λ, c1) = λ4 + σ3λ
3 + σ2λ

2 + σ1λ+ σ0 = 0, (17)

where
σ3 = µ3 − p2κ3,
σ2 = µ2 − p2κ2 + p4ψ2,
σ1 = µ1 − p2κ1 + p4ψ1 + p6ξ1,
σ0 = µ0 + p2κ0 + p4ψ0 − p6ξ0 + p8τ0,
µ3 = a1 + c1/b1 + c21/b

2
1,

µ2 = (−a1b41 + a1b
2
1c1 − b31c1 + a1b1c

2
1 + b21c

2
1 + c31)/b31,

µ1 = (−a1b31c1 + a1c
3
1 + b1c

3
1)/b31,

µ0 = ac31/b
2
1,

κ3 = d1 + d2 + d3 + d4,
κ2 = ((a1b

2
1 + c1(b1 + c1))d1 + b1(a1b1 + c1)d2 + a1b

2
1d3 + c21d3 + b1c1d4 + c21d4)/b21,

ψ2 = d3d4 + d2d3 + d2d4 + d1d2 + d1d3 + d1d4,
κ1 = (c1(c21 +a1b1(b1 + c1))d1− b21(a1b

2
1−a1c1 + b1c1)d2−a1b41d3 +a1b1c

2
1d3 + b21c

2
1d3− b31c1d4 +

b2c21d4 + c31d4)/b31,
ψ1 = (c21d3d4 + b1d2(a1b1d3 + c1d4) + d1(b1(a1b1 + c1)d2 + (a1b

2 + c2)d3 + c1(b1 + c1)d4))/b2,
ξ1 = −d2d3d4 − d1(d3d4 + d2(d3 + d4)),
κ0 = −((a1c

3
1d1)/b31) + a1c1d2 − (c31d4)/b21,

ψ0 = (c1d1(a1b
2
1d2 + c1(a1b1d3 + c1d4))− b21(−c21d3d4 + b1d2(a1b1d3 + c1d4)))/b31,

ξ0 = −d1(c21d3d4 + b1d2(a1b1d3 + c1d4))/b21,
τ0 = d1d2d3d4.

Now, the Routh-Hurwitz criteria can be used to determine the necessary and sufficient require-
ments for local stability of the system (3), which takes the following form:

<(λ) < 0 ⇐⇒


σ0 > 0,

σ1 > 0,

σ3 > 0,

σ1σ2σ3 > σ2
1 + σ0σ

2
3 ,

∀p. (18)

When homogeneous perturbations (p = 0) occur, conditions (18) lead to

<(λ) < 0 ⇐⇒

a1c
3
1

b21
> 0,

a1b
3
1c1−a1c

3
1−b1c

3
1

b31
< 0,

a1 + c1
b1

+
c21
b21
> 0,

(a1b
3
1c1−(a1+b1)c

3
1)

2+a1c
3
1(a1b

2
1+c1(b1+c1))

2−(−a1b41+(a1−b1)b21c+b1(a1+b1)c
2+c3)(−a1b31c+(a1+b1)c

3)(a1+
c(b1+c)

b21
)

b61
< 0.

(19)
It is widely accepted that the process for the emergence of a spatially-uniform time-periodic
solution is Hopf instability and a formula for the Hopf bifurcation points locus can be expressed
by setting <(λ) = 0:

Γ8 c
8
1 + Γ7 c

7
1 + Γ6 c

6
1 + Γ5 c

5
1 + Γ4 c

4
1 + Γ3 c

3
1 + Γ2 c

2
1 + Γ1 c1 = 0,
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where
Γ1 = a31b1,

Γ2 = a21 −
a31
b1
,

Γ3 = −a1(a1+3a21−b1+a1b1)
b21

,

Γ4 =
a21(a1−4b1)

b41
,

Γ5 =
(1+a1)(a

2
1−2a1b1−b21)
b51

,

Γ6 =
2a21−2a1b1−b21

b61
,

Γ7 =
a1+a

2
1+b1+a1b1+b

2
1

b71
,

Γ8 = a1+b1
b81

.

Theorem 5.1. If ψ 6= 0, a1 > 0, b1 > 0, and c1 > 0, then the roots of (17) must satisfy the
following condition:

a1b1 < c21(a1 + b1).

Proof. Let the zeros of Equation (17) be of the form λ = iψ (ψ 6= 0). So, we get from (17)

S(iψ, c1) = (iψ)4 + σ3 (iψ)3 + σ2 (iψ)2 + σ1 iψ + σ0 = 0.

When the real and imaginary components are divided from the above equation, we get

ψ4 − σ2 ψ2 + σ0 = 0, (20)

and

σ3 k
3 + σ1 k = 0. (21)

Now, from Equation (21), we get

ψ2 = −
(
a1b

3
1c1 − a1c31 − b1c31

a1b31 + b21c1 + b1c21

)
> 0.

Therefore, the roots of (17) must satisfy the inequality a1b1 < c21(a1 + b1) for a1 > 0, b1 > 0,
and c1 > 0. �

Remark 1. (1) Since we consider the parameter c1 as a bifurcation parameter, the system
(3) has a limit cycle that passes through the critical value c1 = c∗1, as per the Hopf bifurcation
theorem [33].
(2) For any wave speed value, there exists a constant ρ0 > 0. Now, for every 0 < ρ < ρ0, the
Equation (3) has a set of periodic solutions ln(ρ) with period Tn = Tn(ρ), for each parameter
value c1 = c∗1.

6 Numerical investigation of the diffusive model
In order to verify these theoretical estimations, we apply some numerical techniques for an-
alyzing the diffusive four-component Brusselator model covered in this section. An implicit
technique is used for the one-dimensional analysis and the alternating direction implicit (ADI)
approach [34] is used for the two-dimensional analysis.



284 A. K. M. Nazimuddin et al. / Emergence of Periodic Wave Solutions in a Diffusive....

 250

 260

 270

 280

 290

 300

 310

 320

 0

 100

 200

 300

 400

 500

t

x

Figure 3: Stable periodic wave solution, α in (3).

6.1 One-space dimensional analysis

In this part, we run direct numerical simulations on (3) in one dimension in order to confirm our
analytical result. We utilize the following periodic boundary conditions to generate an implicit
scheme: 

∂α
∂t = d1∇2α+ a1δ − (b1 + γ)α+ α2β, t > 0, x ∈ Λ,
∂β
∂t = d2∇2β + αγ − α2β, t > 0, x ∈ Λ,
∂γ
∂t = d3∇2γ − αγ + c1, t > 0, x ∈ Λ,
∂δ
∂t = d4∇2δ − a1δ + αγ, t > 0, x ∈ Λ.

We consider a space domain [0,Φx], defined by Φx = n × r, where the period and number of
periodic pulses are denoted by r and n, respectively. In our simulation, we used 2500 × 2500
grid elements, space step dx = 0.2 and time step dt = 0.01. The parameter values of (3) are
considered as d1 = 10, d2 = 100, d3 = 10, d4 = 10, a1 = 1, b1 = 1 and c1 = 1.12.
We select Φx = 500 as the system size with twelve periodic pulses, where we choose p1 = 41.67
as the spatial period. The numerical simulation of (3) is performed for the time interval
250 < t < 320. As seen in Figure 3, the outcome is a stable PWS for (3). As a consequence,
the analytical outcome and the numerical outcome in the one-dimension result of the model (3)
exhibit good agreement.

6.2 Two-space dimensional analysis

In this part, we run direct numerical simulation on (3) in two dimensions in order to confirm
the analytical result. We consider the following in the square domain Γ = (0, 150)× (0, 150):
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Figure 4: A stripe pattern formation of (3).


∂α
∂t = d1∇2α+ a1δ − (b1 + γ)α+ α2β, t > 0, (x, y) ∈ Γ,
∂β
∂t = d2∇2β + αγ − α2β, t > 0, (x, y) ∈ Γ,
∂γ
∂t = d3∇2γ − αγ + c1, t > 0, (x, y) ∈ Γ,
∂δ
∂t = d4∇2δ − a1δ + αγ, t > 0, (x, y) ∈ Γ.

We use Neumann boundary conditions to create an IBVP for the model (3). Furthermore, PBC
might be applied here as well, as we have demonstrated the development of PWS in the 1D
situation. We consider the parameter values of (3) as d1 = 10, d2 = 100, d3 = 10, d4 = 10, a1 =
1, b1 = 1, and c1 = 1.12. We take into account the grid elements 1500× 1500, the time interval
dt = 0.01, and the step size dx = dy = 0.1. In this simulation, we obtain a stable stripe pattern
for c1 = 1.12 presented in as Figure 4.

7 Originality in the current investigation

This section discusses the novelty of this research work. In [31], a novel non-diffusive four-
component Brusselator model was first proposed. The authors showed that the non-diffusive
model followed a closed trajectory. Since then, no more studies employing that model have
been released. Hence, we study this new four-component Brusselator model incorporating
diffusion terms, in this research. We prove that the solutions in the diffusive model exist and
are unique. The presence of PWS in the diffusive model is then demonstrated analytically. We
also conduct numerical simulations of the diffusive model in one and two space dimensions to
verify our theoretical analysis. We provide an overview of our results by comparing it with the
earlier studies that are shown in Table 1.
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Table 1: Comparison table.

Literature Model Methodology Obtained Solutions
Akhmedov et

al. [31]
Non-diffusive
four-component
Brusselator
model.

Discrete-
Numerical
tracking
method.

Existence of a closed
trajectory.

Current study Diffusive four-
component
Brusselator
model.

(i) Theoretical
investigation,
(ii) Direct
PDE sim-
ulation in
1-D space,
(iii) Direct
PDE simula-
tion in 2-D
space.

(i) Existence and
Uniqueness of Solution,
(ii) Existence of PWS.

8 Conclusion
In this paper, we studied the four-component Brusselator model incorporating diffusion terms.
Understanding the kinetic properties of chemical reactions requires an understanding of the local
behavior of four-component Brusselator model solutions. So, we examined the local behavior
of the model’s solutions first while ignoring the diffusion terms from the complete system.
We then demonstrated the uniqueness and existence of solutions in the diffusive model. In the
diffusive four-component Brusselator model, the presence of periodic wave solutions is illustrated
analytically. We also carried out several numerical simulations in one and two spatial dimensions
of the diffusive model to verify our theoretical analysis. In the future, the four-component
Brusselator model may be investigated for the stability of PWS rigorously in both 1D and 2D
cases, or the model may be expanded to include the additional input concentration in order to
better understand the behavior of the system.
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