[1] R. P. Agarwal, Dynamical Systems and Applications, World Scientific, 1995.
[2] R. Akbari and L. Navaei, Fractional dynamics of infectious disease transmission with optimal control, Math. Interdisc. Res. 9 (2024) 199–213,
https://doi.org/10.22052/MIR.2023.253000.1410.
[3] X. Meng, L. Chen and B. Wu, A delay SIR epidemic model with pulse vaccination and incubation times, Nonlinear Anal. Real World Appl. 11 (2010) 88–98, https://doi.org/10.1016/j.nonrwa.2008.10.041.
[4] M. A. Zaky and J. A. T. Machado, On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun. Nonlinear Sci. Numer. Simul. 52 (2017) 177–189, https://doi.org/10.1016/j.cnsns.2017.04.026.
[5] M. Lakestani and R. Ghasemkhani, Solving linear and nonlinear duffing fractional differential equations using cubic Hermite spline functions, Math. Interdisc. Res. 9 (2024) 425–442, https://doi.org/ 10.22052/MIR.2024.254944.1463.
[6] W. Malesza, M. Macias and D. Sierociuk, Analytical solution of fractional variable order differential equations, J. Comput. Appl. Math. 348 (2019) 214–236, https://doi.org/10.1016/j.cam.2018.08.035.
[7] Y. M. Chen, Y. Q. Wei, D. Y. Liu and H. Yu, Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets, Appl. Math. Lett. 46 (2015) 83–88, https://doi.org/10.1016/j.aml.2015.02.010.
[8] M. Hosseininia and M. H. Heydari, Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel, Chaos Solitons Fractals 127 (2019) 400–407, https://doi.org/10.1016/j.chaos.2019.07.017.
[9] H. Sun, W. Chen, C. Li and Y. Chen, Finite difference schemes for variable-order time fractional diffusion equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22 (2012) #1250085, https://doi.org/10.1142/S021812741250085X.
[10] H. T. B. Ngo, M. Razzaghi and T. N. Vo, Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system, Numer. Algorithms 92 (2023) 1571–1588, https://doi.org/10.1007/s11075-022-01354-3.
[11] S. Sabermahani, Y. Ordokhani and P. M. Lima, A novel Lagrange operational matrix and Tau-collocation method for solving variable-order fractional differential equations, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020) 127–135, https://doi.org/10.1007/s40995-019-00797-z.
[12] M. Usman, M. Hamid, R. UI Haq and W. Wang, An efficient algorithm based on Gegenbauer wavelets for the solutions of variable-order fractional differential equations, Eur. Phys. J. Plus 133 (2018) 1–16, https://doi.org/10.1140/epjp/i2018-12172-1.
[13] F. S. Yousefi, Y. Ordokhani and S. Yousefi, Numerical solution of variable order fractional differential equations by using shifted Legendre cardinal functions and Ritz method, Eng. Comput. 38 (2022) 1977–1984, https://doi.org/10.1007/s00366-020-01192-8.
[14] H. Hassani, J. A. Tenreiro Machado, Z. Avazzadeh and E. Naraghirad, Generalized shifted Chebyshev polynomials: solving a general class of nonlinear variable order fractional PDE, Commun. Nonlinear Sci. Numer. Simul. 85 (2020) #105229,
https://doi.org/10.1016/j.cnsns.2020.105229.
[15] N. Ayazi, P. Mokhtary and B. P. Moghaddam, Efficiently solving fractional delay differential equations of variable order via an adjusted spectral element approach, Chaos Solitons Fractals 181 (2024) #114635, https://doi.org/10.1016/j.chaos.2024.114635.
[16] K. Rabiei and Y. Ordokhani, Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems, Appl. Math. 63 (2018) 541–567, https://doi.org/10.21136/AM.2018.0083-18.
[17] H. Dehestani, Y. Ordokhani and M. Razzaghi, A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113 (2019) 3297–3321, https://doi.org/10.1007/s13398-019-00694-5.
[18] S. Sabermahani, Y. Ordokhani and S. A. Yousefi, Fractional-order Fibonacci-hybrid functions approach for solving fractional delay differential equations, Eng. Comput. 36 (2020) 795–806, https://doi.org/10.1007/s00366-019-00730-3.
[19] F. Zhou and X. Xu, Fractional-order hybrid functions combining simulated annealing algorithm for solving fractional pantograph differential equations, J. Comput. Sci. 74 (2023) #102172, https://doi.org/10.1016/j.jocs.2023.102172.
[20] A. M. Nagy, N. H. Sweilam and A. A. El-Sayed, New operational matrix for solving multiterm variable order fractional differential equations, J. Comput. Nonlinear Dynam. 13 (2018) https://doi.org/10.1115/1.4037922, #011001.
[21] S. B. Yuste, L. Acedo and K. Lindenberg, Reaction front in an A +B ! C reaction sub-diffusion process, Phys. Rev. E 69 (2004) #036126, https://doi.org/10.1103/PhysRevE.69.036126.
[22] K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw. 41 (2010) 9–12, https://doi.org/10.1016/j.advengsoft.2008.12.012.
[23] J. T. Machado, V. Kiryakova and F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1140–1153, https://doi.org/10.1016/j.cnsns.2010.05.027.
[24] W. G. Glöckle and T. F. Nonnenmacher, A fractional calculus approach to selfsimilar protein dynamics, Biophys. J. 68 (1995) 46–53, https://doi.org/10.1016/S0006-3495(95)80157-8.
[25] Y. Kuramoto, Chemical Oscillations Waves and Turbulence, Mineola. Dover, 2003.
[26] R. Rajaraman, Exploring nonlinear reaction–diffusion in enzyme immobilized systems: integer and fractional order modeling, Appl. Biochem Biotechnol (2024) 1–28, https://doi.org/10.1007/s12010-024-05050-x.
[27] R. L. Bagley and P. J. Torvik, Fractional calculus-A different approach to the analysis of viscoelastically damped structures, AIAA J. 21 (1983) 741–748, https://doi.org/10.2514/3.8142.
[28] A. A. Zafar, G. Kudra and J. Awrejcewicz, An investigation of fractional Bagley-Torvik equation, Entropy 22 (2020) #28,
https://doi.org/10.3390/e22010028.
[29] S. M. Sayed, A. S. Mohamed, E. M. Abo-Eldahab and Y. H. Youssri, Legendre-Galerkin spectral algorithm for fractional-order BVPs: application to the Bagley-Torvik equation, Math. Syst. Sci. 2 (2024) #2733, https://doi.org/10.54517/mss.v2i1.2733.
[30] A. G. Atta, J. F. Soliman, E. W. Elsaeed, M. W. Elsaeed and Y. H. Youssri, Spectral collocation algorithm for the fractional Bratu equation via Hexic shifted Chebyshev polynomials, Comput. Methods Differ. Equ. press (2024), httpa://doi.org/10.22034/CMDE.2024.61045.2621.
[31] M. Al-Mazmumy, A. Al-Mutairi and K. Al-Zahrani, An efficient decomposition method for solving Bratu’s boundary value problem, Am. J. Comput. Math., 7 (2017) 84–93, https://doi.org/10.4236/ajcm.2017.71007.
[32] R. Alchikh and S. Khuri, On the solutions of the fractional Bratu’s problem, J. Interdiscip. Math. 23 (2020) 1093–1107, https://doi.org/10.1080/09720502.2020.1731187.
[33] C. Xua, M. Liaob, M. Farman and A. Shehzade, Hydrogenolysis of glycerol by heterogeneous catalysis: a fractional order kinetic model with analysis, MATCH Commun. Math. Comput. Chem. 91 (2024) 635–664, https://doi.org/10.46793/match.91-3.635X.
[34] T. Azizi, Study on the application of the fractional calculus in pharmacokinetic modeling, Technological Innovation in Engineering Research (2022) 52–70.
[35] H. Dehestani, Y. Ordokhani and M. Razzaghi, Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations, Eng. Comput. 37 (2021) 1791–1806, https://doi.org/10.1007/s00366-019-00912-z.
[36] R. Almeida, D. Tavares and D. F. M. Torres, The Variable-Order Fractional Calculus of Variations, Springer, 2019.
[37] A. H. Bhrawy and M. A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dynam. 85 (2016) 1815–1823, https://doi.org/10.1007/s11071-016-2797-y.
[38] P. Rahimkhani, Y. Ordokhani and E. Babolian, Fractional-order Bernoulli wavelets and their applications, Appl. Math. Model. 40 (2016) 8087–8107, https://doi.org/10.1016/j.apm.2016.04.026.
[39] A. F. Horadam and J. M. Mahon, Pell and Pell–Lucas polynomials, Fibonacci Quart. 23 (1985) 7–20.
[40] S. Sabermahani, Y. Ordokhani and M. Razzaghi, Ritz-generalized Pell wavelet method: application for two classes of fractional pantograph problems, Commun. Nonlinear Sci. Numer. Simul. 119 (2023) #107138, https://doi.org/10.1016/j.cnsns.2023.107138.
[41] S. Sabermahani, Y. Ordokhani and A. Yousefi, Fibonacci wavelets and their applications for solving two classes of time-varying delay problems, Optimal Control Appl. Methods 41 (2020) 395–416, https://doi.org/10.1002/oca.2549.
[42] T. Koshy, Pell and Pell–Lucas Polynomials. In: Pell and Pell–Lucas Numbers with Applications, Springer, New York, NY, 2014.
[43] K. Rashedi, Reconstruction of a time-dependent wave source and the initial condition in a hyperbolic equation, Kuwait J. Sci. 51 (2024) #100104,
https://doi.org/10.1016/j.kjs.2023.07.010.
[44] S. A. Yousefi, Z. Barikbin and M. Dehghan, Ritz-Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non-classic boundary conditions, Internat. J. Numer. Methods Heat Fluid Flow 22 (2012) 39–48, https://doi.org/10.1108/09615531211188784.
[45] D. Chouhan, V. Mishra and H. M. Srivastava, Bernoulli wavelet method for numerical solution of anomalous infiltration and diffusion modeling by nonlinear fractional differential equations of variable order, Results Appl. Math. 10 (2021) #100146, https://doi.org/10.1016/j.rinam.2021.100146.
[46] P. Mokhtary and F. Ghoreishi, Convergence analysis of spectral tau method for fractional Riccati differential equations, Bull. Iranian Math. Soc. 40 (2014) 1275–1290.
[47] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin and D. Baleanu, Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations, Nonlinear Anal. Model. Control 24 (2019) 176–188, https://doi.org/10.15388/NA.2019.2.2.
[48] A. H. Bhrawyi, M. A. Zaky and M. Abdel-Aty, A fast and precise numerical algorithm for a class of variable-order fractional differential equations, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 18 (2017) 17–24.
[49] M. A. Zaky, E. H. Doha, T. M. Taha and D. Baleanu, New recursive approximations for variable-order fractional operators with applications, Math. Model. Anal. 23 (2018) 227–239, https://doi.org/10.3846/mma.2018.015.
[50] H. Jafari and H. Tajadodi, Electro-spun organic nanofibers elaboration process investigations using BPs operational matrices, Iranian J. Math. Chem. 7 (2016) 19–27, https://doi.org/ 10.22052/IJMC.2016.11866.