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Abstract

Herein, we introduce a novel computational approach to
find a solution of variable-order fractional differential equations
(VO-FDE). The desired method is proposed by combining
fractional-order Pell functions, the Ritz and collocation meth-
ods. First, we define a new set of hybrid functions named
fractional-order Pell hybrid functions. Next, to approximate the
solution of VO-FDEs, we obtain an extra pseudo-operational
matrix of the Caputo variable-order derivative. Then, by using
the Ritz method, the operational matrix approach, and the
collocation method, the problem is transformed to a system
of algebraic equations, which is solved by Newton’s iterative
method. The error estimation of the proposed method is
also examined. Finally, some examples (especially in chem-
istry) are presented to illustrate the effectiveness of this method.

(© 2025 University of Kashan Press. All rights reserved.

1 Introduction

Studies in fractional differential equations (FDEs) date back over three hundred years, and many
great mathematicians like Liouville, Riemann, Abel, Riesz, Weyl, and Caputo contributed to the
development of fractional calculus. Since many real-world phenomena can be better described
using fractional operators and their wide range of uses in engineering and science, including
dynamical systems [1], disease dynamics [2], biology [3], optimal control [4], and biological sys-
tems [5], there has been a substantial increase in research in this field. Although fractional
operators can solve certain physical problems, they fall short in representing key types of phys-
ical phenomena where the order depends on either dependent or independent variables. Hence,
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Figure 1: The subject area of the considered problems in Scopus.

there is a class of problems that variable-order (VO) operators would better describe. There
are some studies on analytical solutions of VO-FDEs [6]. The important point is that, in most
cases, the exact solution of VO-FDEs is unavailable. Therefore, developing accurate numerical
methods for solving these equations is an important area of research in engineering science and
mathematics. There are numerous approximate methods, each with unique characteristics and
varying levels of effectiveness. For example, solving VO-FDEs by Legendre wavelets |7, 8], the
finite difference method [9], Chelyshkov wavelets [10], a method based on Lagrange polynomials
[11], Gegenbauer wavelets [12], a method based on shifted Legendre cardinal functions [13], gen-
eralized shifted Chebyshev polynomial operational matrix [14], spectral element method [15],
and so on.

Hybrid basis functions, which involve combining block-pulse functions with certain special poly-
nomials, have been utilized as a powerful mathematical technique for solving a wide range of
problems. Over time, these fundamental functions have been used more and more by researchers
to address fractional models, and several studies have explored their effectiveness in this area
(see, for instance, [16-19]). By changing x to 2%*(a > 0), fractional order hybrid functions have
been introduced.

In this work, we introduce fractional-order Pell hybrid functions (FOPHFs) for solving VO-
FDEs. These functions have one more free parameter (a) compared to the classical hybrid
functions. We define a new VO extra pseudo-operational matrix for the mentioned functions.
The mentioned matrix is computed exactly, which has a direct impact on the method’s accu-
racy. The suggested method in this study is designed based on the mentioned new achievements
with the help of Ritz and collocation methods. In recent years, as a result of the wide and
diverse applications of VO-FDEs, attention to them has increased significantly. A bibliometric
review reveals a growing interest in this field, with a notable rise in publications and citations,
reflecting the expanding research efforts surrounding this topic. The data used in this analy-
sis were gathered from documents from the Scopus database covering publications up to 22nd
September 2024. We utilize ( TITLE ( "differential equation" ) ) AND ( ( TITLE ( "variable-
order" ) OR TITLE ( "variable order" ) ) ), as the main keyword, for searching in the Scopus
database. The total number of resulting publications was 238 documents. Figure 1 displays the
distribution of publications on VO-FDE across various subject areas in Scopus. As shown, the
models are utilized across various fields including mathematics, engineering, computer science,
chemistry, and more. Moreover, Figure 2 illustrates the annual number of documents in the
considered keyword in Scopus. The distribution of related publications by country is presented
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Figure 3: Bar chart showing the distribution of related publications by country in the considered
period.

in Figure 3, highlighting the global engagement in this research area.
In this study, the general form of the VO-FDEs is considered as follows [20]:

DI y(z) = F(x,y(z), DM@ y(z), D2 y(z), ..., D@y (z)), 2 € [0,h], (1)
with the following conditions:
yD(0) = pi, i=0,1,..n—1, n—1€N,

where n — 1 < q(z) <n, q(z) > q@(x) > g(x) > ... > q(z) > 0.

1.1 Application

Since VO-FDEs can model complex systems with memory effects and varying dynamics, they
are utilized across numerous fields for various applications, including chemistry [21-23]. The
use of VO-FDEs in chemistry is valuable for explaining phenomena in which the level of differ-
entiation can vary across time, space, or other factors. For example, the relaxation mechanism
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in the reaction kinetics of proteins is a temperature-dependent fractional order equation that
can model the relaxation mechanism [24]. Therefore, it is justifiable to assume that a differ-
ential equation with operators whose order varies with temperature will offer a more precise
representation of protein kinetics. Also, reaction-diffusion equations describe processes where
chemical substances undergo reactions and diffuse through space, leading to patterns like waves
or oscillations [25]. By using VO-FDEs, more complex and non-local temporal and spatial
dynamics can be captured in these equations. In [8], Hosseininia and Heydari introduced the
Legendre wavelets approach for the numerical solution of the nonlinear variable-order time frac-
tional 2D reaction-diffusion equation. Rajaraman solved integer and fractional order models of
reaction-diffusion in enzyme-immobilized systems using the Lucas wavelet method, as described
in [26].

There are also some fractional differential equations (or VO-FDEs) that simulate natural phe-
nomena. For example, the Bagley—Torvik equation (BTE) (see Example 7.6), which was intro-
duced by Bagley and Torvik [27] to study the viscoelastically damped structure. BTE plays
an important role in numerous applied science and engineering problems. Specifically, any lin-
early damped fractional oscillator with a damping term that includes a fractional derivative of
order 1.5 can be described by the BTE. In particular, equations with half-order or one-and-
a-half-order derivatives can model materials with frequency-dependent damping. It can also
describe the motion of a rigid plate immersed in a viscous fluid and the motion of a gas in a
fluid, respectively [28]. It is worth noting that several methods, including analytical techniques,
decomposition methods, and numerical approaches with operational matrices, have been used
to solve BTE [29].

Given the significance of fractional differential equations in various applications, the fractional
form of Bratu’s equation represents another important model. (see Example 7.7). The Bratu
equation is a second-order nonlinear ordinary differential equation characterized by its expo-
nential component, which makes it nonlinear and challenging to solve analytically [30]. The
fractional Bratu’s equation has been widely applied in various fields, including chemical reac-
tor theory and nanotechnology. A specific model incorporating this equation is the solid fuel
ignition model for thermal reaction processes [31]. By utilizing fractional derivatives, Bratu’s
equation enhances the accuracy of these models, particularly in describing complex dynamics
such as radiative ignition and chemical reactions [32].

There are many other studies on the application of fractional calculus in chemistry, like address-
ing reaction mechanisms for potential glycerol hydrogenolysis pathways by modeling the kinetics
of catalyzed hydrogenolysis utilizing FDEs [33], and drug release mechanisms [34]. These appli-
cations demonstrate how VO-FDEs can effectively represent the complexity of chemical systems
better than traditional differential equations.

1.2 Paper outline

The structure of the paper is organized as follows: Section 2 provides essential definitions
related to fractional calculus. In Section 3, we present the definition and key properties of
Pell polynomials. Following this, we introduce Pell hybrid functions and fractional-order Pell
hybrid functions. In Section 4, we construct an extra pseudo-operational matrix of variable
order fractional derivative based on FOPHFs. The numerical method for solving the VO-FDEs
is expressed in Section 5. We discuss the error analysis for the proposed method in Section 6.
In Section 7, we present some test examples to show the efficiency of the proposed method.
Finally, we present a brief conclusion.
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2 Preliminaries

In this section, we outline the fundamental definitions and prerequisites that are utilized in this
study.

Definition 2.1. The Caputo derivative of fractional variable order operator is defined as [35]

1 z y™(s)
D) = / d >0 2
M= 00 =g Jy oot 770 .
where 7 — 1 < ¢(z) < n and n € N. Moreover for n > 0, we get the following property [36]

I'(n—q(x) +1)
Definition 2.2. Riemann-Liouville variable-order fractional integral operator is defined as [37]
1 €T
11y(0) = s [ = O Nyo)ds, gla) >0 (W
I(q(x)) Jo

Definition 2.3. (Generalized Taylor’s formula) Suppose that Dy € C(0, 1] fori = 0,1,...,m.
Then we have [38]:

m—1 1Y mao
T ) x
= [ § LS 0+ = pma 5
y(x) 2 Tla T 1) y (07) + Fima 7 1) y(n), (5)
where 0 < p < z for all € [0,1). Additionally, we have:
m—1 xia o

— — = Dy (0N | < My,————, 6
[y(=) 2~ T(ia +1) y(07) 1< T(ma + 1) (6)

with Mo > sup,,e(oq7 [P y(1)|. It is important to note that when o = 1, the generalized
Taylor’s formula reduces to the classical Taylor’s formula.

3 Fractional-order Pell hybrid function

We introduce FOPHFs by using Pell polynomials and block-pulse functions. This section is
divided into Pell polynomials, fractional-order Pell hybrid function, and Ritz-function approx-
imation subsections.

3.1 Pell polynomials

Numerous polynomials are worth consideration, among which are the Pell polynomials. The
Pell polynomials are defined by the recurrence relations as [39]

P, () =2zP,_1(x) + Pp_2(x),
By(z) =0, (7)
Pi(x)=1, m>2.

We have the following property for m > 0 [40]

o = (;)m m(—w(m) Mo () 5)

= r) m—r+1
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The relationship between Pell polynomials and Fibonacci polynomials can be expressed through
the equation
P (x) = Fp(22). 9)

Based on previous studies [41], Fibonacci polynomials have demonstrated several advantages
over other well-known polynomials, particularly in numerical approximations. Since Pell poly-
nomials are a special case of Fibonacci polynomials, as shown in Equation (9), so they inherit
the key advantages of Fibonacci polynomials.

The explicit expression for the Pell polynomials is provided [42]

Po(z) = LEJ (m e 1) (2z)m-2n-1, (10)

n
n=0

The fractional-order Pell polynomials can be defined by the change of variable z to 2%, (0 <
a < 1), on the Pell polynomial. The fractional-order Pell polynomials are denoted by P2 (x).

3.2 Pell hybrid function

Considering the properties of Pell polynomials, we define Pell hybrid functions ¢, (), n =
1,2,...,N,m=1,..., M on the interval [0, 1) as follows:
Pn(Nz—n+1), z€ [ %),
0, otherwise,

wn’m(x) - { (11)

where n and m are the orders of the block-pulse functions and the Pell polynomials, respectively.
To obtain the FOPHFs, we replace x with t* in Pell hybrid function, where 0 < o < 1 is an
additional parameter. So the FOPHF of order «, denoted by ¥ (), is defined on [0,1) as
follows

Py (Nt*—n+1), t*e |23, %),

2ty = | (VA D, € P %) (12)
0, otherwise.

To extend the FOPHFs to the interval [0, h), we apply a variable transformation and set t by

x

Z in Equation (12). This yields the following expression:

T 1 1
Pm(Nfa— 1), e{h”—_l%hﬂ‘*),
Y (x) = B nrt), e RO (13)
0, otherwise.
For instance, when N =2, M =3 and o = %7 on [0,1), the corresponding FOPHFs are given
by:
10 1, 0<z<? ooy [ AavE 0<z<)
Va1 () —{ 0, otherwise ’ Via(w) = 0, otherwise ’
1 1+16z, 0<z<3
2 (1) = ’ - 47
Via(®) {07 otherwise ,

0, otherwise 0, otherwise ,

1 1, 1<zr<i1 1 —2+4yx, i<z<l,
(] 1(@—{ 4 ) ¢22,2(93)—{ :

;() 14+4(-142yx)? i<az<l,
xTr) =
3 0, otherwise .

Figure 4 shows graph of FOPHFs for N =2 M =3 and a = %
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Figure 4: Graph of FOPHFs with N =2, M =3 and a = 3.
3.3 Ritz-function approximation

An arbitrary square-integral function y(z) can be approximated using FOPHFs and the Ritz
method, which is a well-established approach in numerical analysis (see, for example [43, 44]):

N M
y(z) ~ W(@)en,m¥p m () + E(2) = w(2)CTT (2) + €(), (14)
n=1m=1
where
\I/Oé(x) = [wila s 7w?,Ma cee ,1/1%,1, ce 7¢?\?,M]Ta (15)
and
CT = [0171,...,CLM,...,CNJ,...,CNJM]T,

is an unknown coefficient vector. Note that £(z) meets the given initial conditions, while w(z)
satisfies the homogenous initial conditions. These functions are not unique. So due to the
considered problem in Equation (1), we choose £(z) and w(x) as:
1 2
w(z) = a" §(@) = py—1 + pn—2
’ =Dt T (- 2)

] + ...+ p().

4 Extra pseudo-operational matrix of variable order frac-
tional derivative

In this part, we aim to introduce an additional extra pseudo-operational matrix of the variable-
order fractional derivative. To achieve this, we first express the FOPHFs in terms of GFPTFs,
obtaining the transformation matrix based on this relationship. Using this transformation ma-
trix, we extract the extra pseudo-operational matrix of the variable-order fractional derivative
for the GFPTFs and subsequently derive the corresponding matrix for the FOPHFs. Along the
way, we outline the necessary prerequisites to finalize the construction of the desired matrix.

4.1 Generalized fractional piecewise Taylor functions

Generalized fractional piecewise Taylor functions (GFPTFs) are defined on the interval [0, h)
as the following formula:

A UC SO

(16)
0, otherwise,

O m(T) = {
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where n =1,2,...,N,and m=0,1,..., M — 1. Suppose that

«@ « o « (o7 T
®%(z) = [Wl,o(x)a cees §01,M—1(~"3)> cee a@N,o(I)a cee <PN,M—1(x)] (17)
= e (x), 95 (2), ..., % (@)]",
and T (x) = [1,m(’, . ,xa(M_l)]T. Also, we can obtain
% (z) = [TY=), T(x), ... ,To‘(m)]T.
N
4.2 Transformation matrix of FOPHFs to GFPTFs
We can rewrite FOPHFs as GFPTFs by expanding it as follows:
M N
2@ =30 Brsvia()- (18)
s=1k=1
So, we have here
U (z) = BO*(x), (19)
which B is the transformation matrix of FOPHFs to GFPTFs. Also, we can write
o (z) = B~ 1U(x). (20)

4.3 Extra pseudo-operational matrix

First, we propose an extra pseudo-operational matrix of variable order fractional derivative of
GFPTFs as follows:

T
DI @ (0) = | LD g, UGBS DD gy
L(n+1-q(x)) L(n+a(M—1)+1—q(z))
_ . I'(n+1) 'n+a(M—-1)+1)
= "1 diq { e T(x
I To+ 1=a@) " T +a -+ 1—g@)) "
= hZEZ‘)T(z).
(21)
So for ®*(z), we have
DI (279 (x)) = H% 0% (x), (22)
where
me s U 0 n,0 1T
Hotey = diaglhagay: hogays -y
N

Next, utilizing the previous subsection, we introduce an extra pseudo-operational matrix of
variable order fractional derivative of FOPHFs. Using Equations (22), (19) and (20), we have

DI (2% (z)) = DU ("B (x)) = BDI™) (270 (x))

= BHZ&‘I)Q(QC) = BHZ{;)B—lw(x) (23)

It is worth noting that the fractional and integer derivatives are a special case of variable order
derivative, and this extra pseudo-operational matrix is valid for them.
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5 Numerical technique

We consider the problem outlined in Equation (1). As the first step, utilizing the Ritz-function
approximation (mentioned in Equation (14)), we approximate the unknown function y(z) in
the following form:

N M
2) =Y > @ty (@) + E(x) = 2" CTV (@) + £(2), (24)
n=1m=1
where
1 x"*2

§(z) = Pnflm + pn—2 o

W + ...+ po,

and C is an unknown coefficients vector. Now, utilizing Equation (23) allows us to express

DI (y(x)) = CT QL W (2) + £(2), (25)
where )
~ - k + 1) _

Then, we substitute Equations (24) and (25) in Equation (1). Next, By implementing the
collocation method in the following points

7

m)é, i:1,2,...,NM, (26)

we derive a system of algebraic equations that can be resolved using Newton’s iterative method,
which ultimately determines the values of ¢; ; in Equation (24). However, applying Newton’s
method to such systems presents challenges, particularly in complex or high-dimensional prob-
lems. One of the primary difficulties is selecting an appropriate initial guess, as convergence
significantly depends on this choice. A poor initial guess can lead to divergence or slow conver-
gence of the method.

Additionally, the computational cost, including the number of iterations required, becomes
critical as the problem complexity increases.

6 FError estimation

Theorem 6.1. Suppose that D*®y € C(0,h] for i = 0,1,...., M and (2M + 1)a > 1. Let
m = NM, wy = span{Pf(z), P§'(z), ..., P& (x)} and yp(x) = ATP(x), in which P®(x) =
[Pe(z), .., P& (2)]T and A is the coefficient vector. If yn () is the best approzimation to y(z)
out of wyy on the interval (2 h, 1), then the error bound for the approzimate solution y(x)
using the FOPHFs on the interval [0, h) can be expressed as follows:

h(@CM+1)a

Y —Ymlly < sup |DMoy(x)]. 27

| 2 D(Ma+1)y/(2M + 1o me[o,h)| (@)] @7)
Proof. We define,

0"). 28

F (la+1) y( ) (28)

=0
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According to the generalized Taylor’s formula provided in Definition 2.3, we obtain:
Mo

() = 5| < oy S DM )], (29)

where I, = [%h, «h). Given that yy(x) = ATP<(z) represents the best approximation to
y(x) out of wps on I, and Zi]\io 2% pyiay (0%) € war, we have the following relation:

T(iat1)
N N
|y — ym||2L2[o,h) = ||y - CT‘I’QHQLz[o,h) = Z Hy - ATPQHQLz["T*Ih,%h) < Z ly — ?)||2L2 nlh,2h)
N Ma = 2 i
<3 [ [ s o] =t
" ate Ma i a—1
= /0 [F(Moz 1) aeion 1P y(x)|] v
(2M+1)a 2
= P(Mail)z(QM—k la <I21[31?h> ’DMay(x”) '
(30)
The theorem is proved by taking the square roots. |

7 Numerical examples

To demonstrate the effectiveness and precision of this method for solving variable-order frac-
tional differential equations, we apply it to several examples and compare the numerical results
with those from existing methods. The calculations for the tests were carried out using Math-
ematica 13. 1.

Example 7.1. Consider the VO-FDE given in [7] as

D®@y(x) = 10y (x) + y(x) = h(z), = €[0,1],

. 1 p2—a(x) rl—a() 22 — 00 05
() = <F(3 —q(x)) + re- ‘J(l"))> Fow e (31)
x4 2e”
(J}) - 7 :
y(0) =5

The exact solution is y(x) = 5(1 + x)2. We apply the present method with o = 1, N = 2, and
M = 2 for solving this problem. Then, according to the numerical technique elaborated in

Section 5, we have:
y(x) ~ 20T W (2) + 5, (32)

By using Equation (25), we obtain

DIWy(z) =~ CTQ L W (), (33)

and

Y'(@) = 0Ty v (2). (34)
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Table 1: Comparison of the absolute errors at some selected grid points in Example 7.1.

x SLCF [13] LWM [7] Lagrange polynomials[11]
M=2 k=2, M=4 M=2

0.2 1.77636 x 1071  8.091305 x 10712 2.66454 x 10715

0.4  1.77636 x 10715  2.024535 x 1079 3.55271 x 10715

0.6 1.77636 x 107  9.564669 x 10710 1.77636 x 10~1°

0.8 0 1.696030 x 10~10 3.55271 x 10715

Therefore, the problem can be transformed into the following linear algebraic equation

CTQll wi(x) — 10CT Q1 W (z) + (xCT W (x) + 5) = h(x). (35)

Then, by using the collocation method, we get
5

C21 = ?, Co2 = —.

C11 = 10, C12 = 1

Za
So we obtain y(z) = 5(1 + x)?, The exact solution of the problem. The exact solution was
not found in the Legendre Wavelet method (LWM) [7], Bernoulli Wavelet method (BWM) [45],

SLCF method [13] and method based on Lagrange polynomials[11]. The absolute error these
mentioned methods are reported in Table 1.

Example 7.2. Consider the following nonlinear VO-FDE of the form [7]:

DY @y(z) — Ty (x) + by(x) — 6" (x)y(z) = f(x), = €[0,1],

(2 agw, 3 1q<w>) o2 B
f(x)5<r(3_q(x))m g 97542 — 8952 — 105,

5 : (36)
o(z) = (cos(:c);r Sm(x))’
y(0) = 0.

The analytic solution is y(z) = 5(3x + 22). Using the proposed technique, we numerically solve
this problem with « = 1, N = 2 and M = 2. Table 2 displays the comparisons between the
absolute errors obtained by the proposed method, finite difference scheme (FDS) [7], and LWM
[7]. The absolute error of the numerical solutions for this problem is plotted in Figure 5.

Example 7.3. Consider the nonlinear VO-FDE:

+ sin(z)z”, (37)

The exact solution for this problem is y(z) = z%. Here we solve the given VO-FDE over [0, 1]
with N =1, M =6, a = % and N =1, M = 6, « = 1. The graph of absolute error for
N=1,M=6, a= % is displayed in Figure 7. In Table 3, we compare the absolute errors
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Table 2: Comparison of the absolute errors at some selected grid points in Example 7.2.

x LWM [7] FDS [7] Present method
k=2, M=4 M=10 N=2, M=2
0.2 1.199041 x 10~ ™ 4.7 x 1074 0

0.4 1.421085 x 10~'* 5765 x 1073  8.88178 x 10716
0.6 2.842171 x 1071*  1.2471 x 1072  5.32907 x 10~1°
0.8 1.669775 x 10713  1.8643 x 10~2 1.06581 x 1014
1 2.273737 x 10712 2.4094 x 1072 7.10543 x 1015

0F

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Absolute error of the present method for N = 2, M = 2, in Example 7.2.



Iranian Journal of Mathematical Chemistry 16 (3) (2025) 223 — 244

235

Table 3: The absolute errors of Example 7.3.

x Method in [11] Our method

M=6 M =10 a=LM=6 a=1/2,M=6
0.2 3.70929 x 1075 2.07663 x 10~7 9.75393 x 10=¢  1.77809 x 10~17
0.4  5.79180 x 1076  4.14451 x 1078  8.02079 x 10~° 0
0.6 522717 x 1076 2.67798 x 10~7  7.03476 x 1076 555112 x 10~17
0.8 1.33024 x 107° 1.51750 x 1078  5.96705 x 1076  3.88578 x 10716
1.0 3.44242 x 107°  1.57873 x 107>  2.89527 x 10~° 1.77636 x 10~1°

08 0.00060 a=1

0.00055 ~

0.00050 i
06 0.00045 g
0.00040 e

0.00035 P

0.00030 . . . .
0.100 0.105 0.110 0.115 0.120

L L L
0.6 08 1.0

Figure 6: Plot of the exact solution and the approximate solutions with N = 1, M = 6 and
different values of « in Example 7.3.

of our scheme and the method in [11]. It is important to mention that the current method
produces more accurate approximations using the same number of basis functions compared
to the approach proposed in [11]. Also, the approximate solution given by N = 1, M = 6 and
a = 0.5,0.9,1, is plotted in Figure 6. The findings presented in this figure indicate that the
method yields very close approximations across different values of «.

Example 7.4. Consider the following nonlinear VO-FDE [46]
DIy(z) + y(z) + Vay () = f(z), = €[0,1],

N E Vs )
= 1 + x2 + ,
o= (b S
q(z) = @ cos(x),
y(0) =0.
The exact solution is y(z) = 2*. The absolute errors of our results with a = 1, N = 1, M = 6;
a=01, N=1, M =5and N =1, M =6 for A = 1.2 are displayed in Table 4. These results
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Figure 7: Absolute error of the present method for N =1 ,M =6, and o = 3 in Example 7.3.

Table 4: Comparison of the absolute error at selected points using the present method for
Example 7.4.

M=6,a=1 M=5a=01 M=6,a=0.1

0 0 0 0
0.2 5.11506 x 1075  5.55112 x 107 0
0.4 897153 x 10~°  3.33067 x 1016 0

0.6 4.57737 x 107% 7.77156 x 10716 1.11022 x 10~16
0.8 6.98252 x 107° 1.33227 x 10~ 3.33067 x 10716

were not obtained in [13, 46, 47]. From Table 4, we can see that the current method provides
more precise approximations compared to the other methods mentioned earlier. To examine
the effect of varying «, we have used the method with N =1, M =5 and a = 0.1,0.5,0.7,0.9, 1.
The approximate solutions are plotted in Figure 8.

Example 7.5. We consider the following VO-FDE [48]
DYy (x) +3y'(x) — y(z) = f(x), = €[0,1], (39)

where

(1 —gqg(z),x) o) = 1+ cos?(x)
M) 0=

The exact solution of the Equation (39) is y(z) = e®. We applied the present method and the
absolute errors of the numerical solution obtained by using o = 1 and various values of N and
M are shown in Table 5.

We also computed the Lo-norm of the errors for our approximations and compared them with
the maximum values of the theoretical upper bound. Table 6 presents the results for different
values of N and M.

flz) =¢€" (3 — y(0) = 1.
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Figure 8: Plot of the approximate solutions with N = 1, M = 5 and different values of «
together with the exact solution in Example 7.4.

Table 5: Comparison of the absolute error at specific points with the current method in Exam-

ple 7.5.

N=1,M=7 N=2M=7 N=1,M=9
0 0 0 0
0.2 2.53076 x 1078 1.36203 x 10719 4.05587 x 10~ !
0.4 2.51629 x 108 1.33905 x 10710  4.04314 x 10~ !¢
0.6 2.55203 x 1078  3.10016 x 1075  4.10096 x 10~!!
0.8 2.6273 x 1078 3.1889 x 1076  4.20992 x 1011

Table 6: Comparison of La-norm of errors and theoretical upper bound for Example 7.5.

N M Ly-Norm of Error

Upper bound

2 7
1 9
1 12

2.24541 x 10~
4.00963 x 10~ 11
8.93345 x 1010

1.39257 x 10~
1.71852 x 10~
1.13498 x 109




238 N. Shiri et al. / Fractional-Order Pell Hybrid Functions for Solving....

Table 7: Comparison of the absolute errors of Example 7.6.

N, M Present method N Method in [49]

(0,8)=1(0,1) (0,8)=(2,4) (6,8)=(3,6)
N=1,M=5 387558x107% 5 8318x107% 2666 x 102 1.231 x 1073
N=1,M=10 157818 x107'' 10 2515 x1073 3.854x107% 1.179x 1077
N=1,M=15 563993 x 10~ 15 1.771x10~* 2721 x1079 7.242 x 10~!!

Example 7.6. Here, we present a variable-order (VO) version of the BTE, which, as discussed
in the application section of this paper, see Subsection 1.1, plays an important role in modeling
the motion of a rigid plate immersed in a viscous fluid, as well as the behavior of a gas in a
fluid. Consider the following VO BTE [49]

D@y(x) = —y(z) —y"(x) + f(z), @€ [0,h], (40)

with y(0) =0, ¢’ (0) =1, g(z) = w and

-1 v _sin(@—10)+4

9

The analytic solution is y(x) = sin(x). Here we solve the given VO-FDE over [0, ] with a = 1
and N = 2, M = 6 and demonstrate the exact and approximate solutions and the graph of
absolute errors in Figure 9 and Figure 10, respectively. Moreover in this example for comparing
our numerical result with [49], we use ME, maximum absolute error, which is computed using
the following formula

max |y(x) — y(z)|,

mas [y(z) = (@)
where the numerical solution is represented by g(x). ME of the solutions obtained by using the
present method and method in [49] are shown in Table 7. In Table 7 we let o = 1 for different
value of N, M, and also # and 3 are the parameters utilized in the definition of the Laguerre

polynomials in [49].
Example 7.7. Consider the following fractional Bratu-type equation [50]:
D@ y(z) — 2exp(y(x)) =0, l1<g(z)<2, 0O0<z<l, (41)

The fractional Bratu equation is widely applied in chemical reactor theory and nanotechnology.
The fractional Bratu equation enhances the solid fuel ignition model by accurately capturing
complex dynamics like radiative ignition and chemical reactions (Further details and references
can be found in the 1.1. The initial conditions of (41) are:

For g(x) = 2, the exact solution is y(x) = —21n(cos(x)). By applying the present technique for
a=N=1,M =9, we solve the Equation (41) for different values of g(z). The exact solution
and approximate solutions for ¢(z) = 2,1.95,1.80, 1.65, are presented in Figure 11.
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Figure 11: Comparison the exact solution for ¢(z) = 2 with the approximate solutions for the
different values ¢(z) for Example 7.7.

8 Conclusion

This work aims to develop an efficient and accurate method for solving VO-FDEs. To achieve
this, we developed a novel method based on FOPHFs. We approximated the function using the
Ritz method and obtained the extra pseudo-operational matrix of the variable order fractional
derivative for FOPHF. Based on illustrative examples, the presented method was more accurate
than the compared methods. Our numerical results show that we could obtain exact solutions
for problems and get the solutions not given in some previous papers. The results of this study
suggest several potential directions for future research. Extending the current method to frac-
tional partial differential equations and multi-dimensional problems could significantly enhance
its applicability. Applying the proposed technique to real-world problems would demonstrate
its practical utility and validate its versatility. Addressing these challenges in future studies
could further establish the importance of FOPHFs in solving complex fractional differential
equations and contribute to advancements in numerical methods for fractional calculus.
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