On Some Extremal Results and Bounds of Additively Weighted Edge Mostar Index

Document Type : Research Paper

Authors

1 Bishop Chulaparambil Memorial(BCM) College‎, ‎Kottayam-686001‎, ‎India & Marthoma College,Thiruvalla,Pathanamthitta‎ - ‎689103‎, ‎India

2 St.Aloysius College‎, ‎Edathua‎, ‎Alappuzha‎ -689573, ‎India

10.22052/ijmc.2024.254661.1858

Abstract

‎The additively weighted edge Mostar index is a topological index(TI) defined as an extension of the edge Mostar index‎. ‎In this paper‎, ‎we determine the extrema of the additively weighted edge Mostar index for trees‎. ‎Additionally‎, ‎we compute the lower bound and first four upper bounds of additively weighted edge Mostar index of unicyclic graphs and the upper bound for cacti with a fixed number of cycles‎. ‎All the graphs attaining the bounds are characterized‎. ‎We also propose two conjectures on additively weighted edge Mostar index of bicyclic graphs‎.

Keywords

Main Subjects


[1] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20, https://doi.org/10.1021/ja01193a005.
[2] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes NY, 27 (1994) 9–15.
[3] G. Indulal, L. Alex and I. Gutman, On graphs preserving PI index upon edge removal, J. Math. Chem. 59 (2021) 1603–1609, https://doi.org/10.1007/s10910-021-01255-1.
[4] P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman and G. Domotor, The Szeged index and an analogy with the Wiener index, J. Chem. Inf. Comput. Sci. 35 (1995) 547–550, https://doi.org/10.1021/ci00025a024.
[5] S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (1996) 45–49, https://doi.org/10.1016/0893-9659(96)00071-7.
[6] F. Movahedi, M. H. Akhbari and H. Kamarulhaili, On the hosoya index of some families of graph, Math. Interdisc. Res. 6 (2021) 225–234, https://doi.org/10.22052/MIR.2021.240266.1238.
[7] I. Rezaee Abdolhosseinzadeh, F. Rahbarnia and M. Tavakoli, Sombor index under some graph products, Math. Interdisc. Res. 7 (2022) 331–342, https://doi.org/10.22052/MIR.2022.246533.1362.
[8] R. Sharafdini, M. Azadimotlagh, V. Hashemi and F. Parsanejad, On eccentric adjacency index of graphs and trees, Math. Interdisc. Res. 8 (2023) 1–17, https://doi.org/10.22052/MIR.2023.246384.1391.
[9] S. Simic, I. Gutman and V. Baltic, Some graphs with extremal Szeged index, Math. Slovaca 50 (2000) 1–15.
[10] B. Zhou, X. Cai and Z. Du, On Szeged indices of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 113–132.
[11] T. Došlic, I. Martinjak, R. Škrekovski, S. Tipuric Spuževic and I. Zubac, Mostar index, J. Math. Chem. 56 (2018) 2995–3013, https://doi.org/10.1007/s10910-018-0928-z.
[12] A. Ali and T. Došlic, Mostar index: results and perspectives, Appl. Math. Comput. 404 (2021) #126245, https://doi.org/10.1016/j.amc.2021.126245.
[13] N. Ghanbari and S. Alikhani, Mostar index and edge Mostar index of polymers, Comp. Appl. Math. 40 (2021) 1–21, https://doi.org/10.1007/s40314-021-01652-x.
[14] L. Alex and G. Indulal, Sharp bounds on additively weighted Mostar index of cacti, Commun. Comb. Optim. In press, https://doi.org/10.22049/CCO.2024.28757.1702.
[15] L. Alex and I. Gutman, On the inverse Mostar index problem for molecular graphs, Trans. Comb. 14 (2025) 66–77.
[16] F. Hayat and B. Zhou, On cacti with large Mostar index, Filomat 33 (2019) 4865–4873, https://doi.org/10.2298/FIL1915865H.
[17] A. Tepeh, Extremal bicyclic graphs with respect to Mostar index, Appl. Math. Comput. 355 (2019) 319–324, https://doi.org/10.1016/j.amc.2019.03.014.
[18] M. Arockiaraj, J. Clement and N. Tratnik, Mostar indices of carbon nanostructures and circumscribed donut benzenoid systems, Int. J. Quantum Chem. 119 (2019) #e26043, https://doi.org/10.1002/qua.26043.
[19] M. Imran, S. Akhter and Z. Iqbal, Edge Mostar index of chemical structures and nanostructures using graph operations, Int. J. Quantum Chem. 120 (2020) #e26259, https://doi.org/10.1002/qua.26259.
[20] H. Liu, L. Song, Q. Xiao and Z. Tang, On edge Mostar index of graphs, Iranian J. Math. Chem. 11 (2020) 95–106, https://doi.org/10.22052/IJMC.2020.221320.1489.
[21] A. Ghalavand, A. R. Ashrafi and M. Hakimi-Nezhaad, On Mostar and edge Mostar indices of graphs, J. Math. (2021) #6651220, https://doi.org/10.1155/2021/6651220.
[22] L. Alex and G. Indulal, On a conjecture on edge Mostar index of bicyclic graphs, Iranian J. Math. Chem. 14 (2023) 97–108, https://doi.org/ 10.22052/IJMC.2023.248632.1680.
[23] S. Brezovnik and N. Tratnik, General cut method for computing Szeged-like topological indices with applications to molecular graphs, Int. J. Quantum Chem. 121 (2021) #e26530, https://doi.org/10.1002/qua.26530.
[24] K. Deng and S. Li, On the extremal values for the Mostar index of trees with given degree sequence, Appl. Math. Comput. 390 (2021) #125598, https://doi.org/10.1016/j.amc.2020.125598.