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Abstract

The additively weighted edge Mostar index is a topological
index(TI) defined as an extension of the edge Mostar index. In
this paper, we determine the extrema of the additively weighted
edge Mostar index for trees. Additionally, we compute the
lower bound and first four upper bounds of additively weighted
edge Mostar index of unicyclic graphs and the upper bound for
cacti with a fixed number of cycles. All the graphs attaining
the bounds are characterized. We also propose two conjectures
on additively weighted edge Mostar index of bicyclic graphs.
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1 Introduction
Topological indices(TI) are real-valued functions associated with graphs which contain struc-
tural information of graphs and preserve graph isomorphisms. The first TI was due to H. Wiener
[1], who described it as an estimate of boiling points of conjugated hydrocarbons. Subsequently,
a considerable number of TI’s were defined and studied. A prominent one among them is the
Szeged index (Sz) proposed by I. Gutman [2]. For any simple connected graph G = (V,E)

Sz(G) =
∑

e=xy∈E
nx(e|G)ny(e|G),

where nx(e|G) represents the number of vertices that are closer to x than to y. Although
the Szeged index was defined as an extension of the Wiener index, it has been the subject
of numerous studies. For a detailed review of the literature on the Szeged index and other
topological indices, see [3–10]. Although the mathematical properties of the Szeged index
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are significant, it does not exhibit a high correlation with the physical properties of chemical
compounds compared to other TI. New variants of the Szeged index were proposed to study
various physical and chemical properties of compounds. One among them was the Mostar
index, Mo(G) proposed in 2018 by T. Došlić et al. [11], defined as:

Mo(G) =
∑

e=xy∈E
|nx(e|G)− ny(e|G)|,

Many more applications and results were obtained for the Mostar index recently, for a detailed
literature on the Mostar index, see [12–17]. An analogous edge version of the Mostar index was
proposed in 2019 by M. Arockiaraj et al. [18]. Muhammad Imran et al. [19] determined the edge
Mostar index of some nanostructures using graph operations. H. Liu et al. [20] determined the
extrema of the edge Mostar index for trees and unicyclic graphs and proposed two conjectures
on the extrema of bicyclic graphs. Ali Ghalavand et al. [21] solved the conjecture for the lower
bound of the edge Mostar index for bicyclic graphs. Liju Alex and G. Indulal [22] proposed the
correct version of the conjecture for the upper bounds of bicyclic graphs and proved it. Various
modified versions of the Mostar index was proposed recently [23], a particular one of interest
is the additively weighted edge Mostar index. The additively weighted edge Mostar index of a
graph G = (V,E) is defined as:

MoAe(G) =
∑

e=xy∈E
(d(x) + d(y))|mx(e|G)−my(e|G)|,

where mx(e|G) represents the number of edges closer to x than to y. As it was proposed in
2020, there hasn’t been much study done on it. Let Tn,Un represent the collection of all trees,
unicyclic graphs of order n respectively and C(n, t) denotes the collection of all cacti of order n
having t cycles. In this paper, we establish bounds of additively weighted edge Mostar index of
trees, unicyclic graphs and cacti and characterize the corresponding graphs. Throughout this
paper, we consider only simple, connected, finite, undirected graphs.

2 Trees
In Section 2, we obtain the lower bound and upper bound of the additively weighted edge Mostar
index of trees. For every edge e = xy of a graph G, let MoAe(e|G) = (d(x) + d(y))|mx(e|G)−
my(e|G)| denotes the contribution of the edge e to the additively weighted edge Mostar index.
We tweak the approach in [11] to prove the following results.

Lemma 2.1. Let G be a graph of order n > 2 and size m ≥ 2. Then for any edge e = xy,
|mx(e|G)−my(e|G)| ≤ m− 1. Moreover, |mx(e|G)−my(e|G)| = m− 1 if and only if e = xy
is a pendant edge.

Proof. If at least one edge other than e = xy is incident with both the end vertices of e,
then |mx(e|G)−my(e|G)| ≤ m− 3. Thus |mx(e|G)−my(e|G)| is maximum when one among
mx(e|G),my(e|G) is zero and other is m− 1 which is if and only if e is a pendant edge. �

A bridge different from a pendant edge is considered as a non-pendant bridge.

Lemma 2.2. Let f = pq be a non pendant bridge on a graph G and let G1 be the graph obtained
from G by identifying the end vertices p and q to a new vertex r and by adding a new pendant
edge rw. Then

MoAe(G) < MoAe(G1).
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Proof. Let |E| = m. For every edge e = xy, we have (d(x) + d(y))|G ≤ (d(x) + d(y))|G1 with
equality holds when x 6= p, q or y 6= p, q. For every edge e = xy 6= rw, |mx(e|G)−my(e|G)| =
|mx(e|G1) − my(e|G1)|. For the bridge f = pq, (d(p) + d(q))|G = (d(r) + d(w))|G1 and
|mp(f |G)−mq(f |G)| < |mr(rw|G1)−mw(rw|G1)| = m−1. Thus for any edge e,MoAe(e|G) ≤
MoAe(e|G1), hence the claim. �

Theorem 2.3. Let G ∈ Tn, n ≥ 4. Then

(a) MoAe(G) ≥ 2n2 − 6n+ 4 and the equality holds if and only if G ∼= Pn.

(b) MoAe(G) ≤ n3 − 3n2 + 2n and the equality holds if and only if G ∼= Sn.

Proof. |E| = m = n−1. In the case of the upper bound, for each edge e = xy, (d(x)+d(y))|G ≤
n and |mx(e|G)−my(e|G)| ≤ n−2, thus the contribution of each edge should be at most n(n−2).
Now by Lemma 2.1, |mx(e|G)−my(e|G)| = n− 2 if and only if the edge e is a pendant edge.
Thus MoAe(G) is maximum when every edge of G is a pendant edge and hence G must be a
star Sn. Now by direct computation, MoAe(Sn) = n(n− 1)(n− 2) = n3 − 3n2 + 2n.

Now in the case of lower bound, let G ∈ Tn such that G � Pn. Then G must have a vertex v
with degree d(v) ≥ 3 such that G−v has at least two components. In each of these components
take paths P ′, P ′′ of lengths p and q respectively with p ≥ q ≥ 1. Let G′ be a graph obtained
by removing the pendant edge of the shorter path P ′′ and adding a pendant edge at a pendant
vertex vp of P ′. Let the newly added pendant vertex be vp+1. For every edge e in G which is
not incident on the vertices of P ′ or P ′′, the contribution of the edge remains unchanged by
the transformation. Now consider the following cases,
Case I (q > 2) Those edges which lie in the paths P ′, P ′′ will contribute in the difference
between the additively weighted edge Mostar index of the graphs G and G′. Thus

MoAe(G)−MoAe(G
′) = (2 + d(v))(n− 2q) + 4(n− 2q + 2)) + · · ·+ 3(n− 2)

+ (2 + d(v))(n− 2p) + 4(n− 2p+ 2)) + · · ·+ 3(n− 2)

− ((2 + d(v))(n− 2q + 2) + 4(n− 2q + 4)) + · · ·+ 3(n− 2))

− ((2 + d(v))(n− 2p− 2) + 4(n− 2p) + · · ·+ 3(n− 2))

= 8(p− q + 1) > 0.

Case II (q = 2) When p > 2 as in the previous case, MoAe(G) −MoAe(G
′) = 8(p − 2) > 0

and when p = 2, MoAe(G)−MoAe(G
′) = 8 > 0.

Case III (q = 1) When p > 2 as in the previous case, MoAe(G)−MoAe(G
′) = n(d(v)− 3) +

8p+ 2 > 0, since d(v) ≥ 3. When p = 2, MoAe(G)−MoAe(G
′) = n(d(v)− 3) + 18 > 0, since

d(v) ≥ 3.
In all the cases G cannot attain the minimum value MoAe. Thus Pn is the graph obtaining

the minimum MoAe. Now by direct computation, MoAe(Pn) = 2n2 − 6n+ 4. �

3 Unicyclic graphs
In Section 3, we determine the extrema of additively weighted edge Mostar index for unicyclic
graphs. We use the results in the previous section to obtain the bounds of MoAe. Let Cr,n−r
denotes the unicyclic graph consists of the cycle Cr of length r along with n− r pendant edges
incident at a common vertex of Cr.

Lemma 3.1. Let e be a pendant edge of a graph G of order n > 2. Then MoAe(e|G) > 0.

Proof. Using the definition of MoAe. �
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Figure 1: Graphs with largest and second largest additively weighted edge Mostar index among
unicyclic graphs.

Proposition 3.2. Let n ≥ 7 and r ≥ 3. Then

MoAe(Cr,n−r) =

{
n3 − 2n2r + 4n2 + nr2 − nr − 3n− 3r2 + 3r, if r is even,
n3 − 2n2r + 4n2 + nr2 − nr − 7n− 3r2 + 7r, if r is odd.

Proof. Let u be the common vertex in Cr,n−r with d(u) > 2. When r is even, For the (n− r)
pendant edges, MoAe(e|Cr,n−r) = (n−r+3)(n−1). For the two edges in the cycle incident on
u, MoAe(e|Cr,n−r) = (n− r + 4)(n− r) and for the remaining r − 2 edges, the contribution is
4(n−r) each. Thus,MoAe(Cr,n−r) = (n−r)(n−r+3)(n−1)+2(n−r+4)(n−r)+(r−2)4(n−r) =
n3− 2n2r+ 4n2 +nr2−nr− 3n− 3r2 + 3r. Similarly, when r is odd, except for one edge in the
cycle, whose contribution zero, all the other edges have the same contribution as in the previous
case. Thus, MoAe(Cr,n−r) = (n− r)(n− r+ 3)(n− 1) + 2(n− r+ 4)(n− r) + (r− 3)4(n− r) =
n3 − 2n2r + 4n2 + nr2 − nr − 7n− 3r2 + 7r . �

Theorem 3.3. Let G ∈ Un. Then

(a) MoAe(G) ≥ 0 and the equality holds if and only if G ∼= Cn.

(b) MoAe(G) ≤ n3 − 2n2 − n− 6 and the equality holds if and only if G ∼= C3,n−3.

Proof. MoAe(Cn) = 0. Now, let G ∈ Un be the graph with minimum additively weighted edge
Mostar index. Then G cannot have any bridge, otherwise, if e is a bridge of G. Then e is part
of a subtree T of G and T must have a pendant edge e′ = uv, thus MoA(e′|G) > 0, impossible.
Thus every edge of G should be part of the cycle, thus G ∼= Cn. Also, if G � Cn, then G must
have a bridge, hence MoAe(G) > 0.

Now in the case of upper bound, let G be the unicyclic graph with maximum additively
weighted edge Mostar index. Then by Lemma 2.2, all the edges of the sub-tree Ti attached
at the vertex vi of the cycle in G should be pendant edges at the vertex vi for all i. Now we
proceed by establishing the following claims on G.
Claim I (All the pendant edges of G should be incident at a single vertex) Let
Cr = v1v2v3 . . . vrv1 be the cycle of G with ti ≥ 0 pendant edges attached on the vertex vi for
each i = 1, 2 . . . r and

∑r
i=1 ti = t. Let G′ be the graph optained by moving all the pendant

edges from v2, v3 . . . vr to v1.
Case I.1 (r = 2k) Clearly, n = 2k + t. For each pendant edge f incident at vi, we have
MoAe(f |G) = (ti +3)(n−1), i = 1, 2 . . . r and for the corresponding edge in G′, MoAe(f |G′) =
(t+3)(n−1). For each edge fi = vivi+1 in the cycle Cr,MoAe(f |G) = (ti+ti+1+4)(n−2−mi)
where mi is the dimnishing quantity, mi > 0. For the corresponding edge in G′, MoAe(f |G′) =
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4(n−2−2(k−1)) if i 6= 2, r, and for v1v2 and v1vr we haveMoAe(f |G′) = (4+t)(n−2−2(k−1)).
Let m0 = min{m1,m2, . . . ,mr} then clearly, m0 ≥ 2(k − 1).

MoAe(G
′)−MoAe(G) = t(t+ 3)(n− 1) + (8k − 8)(n− 2k) + 2(t+ 4)(n− 2k)

−
r∑

i=1

ti(ti + 3)(n− 1)−
r∑

i=1

(ti + ti+1 + 4)(n− 2−mi)

≥
r∑

i,j=1
i 6=j

2titj(n− 1) + 8k(m0 − 2(k − 1)) + 2t(m0 − 2(k − 1))

≥ 0.

Case I.2 (r = 2k + 1) Then n = 2k + 1 + t. For t = 1, we have nothing to prove. Let t > 1,
then there exist i, j such that ti, tj ≥ 1. The contribution of pendant edges is as in the previous
case. For each edge fi = vivi+1 in the cycle Cr, MoAe(f |G) = (ti + ti+1 +4)(n−1−mi− ti+k).
For the corresponding edge in G′, MoAe(f |G′) = 4(n− 1− 2k) if i 6= 2, k, r, and for v1v2 and
v1vr we haveMoAe(f |G′) = (4+ t)(n−1−2k) and for the remaining one edge the contribution
is zero. Let m0 = min{m1,m2, . . . ,mr} then clearly, m0 ≥ 2k.

MoAe(G
′)−MoAe(G) = t(t+ 3)(n− 1) + (8k − 8)(n− 1− 2k) + (2t+ 8)(n− 1− 2k)

−
r∑

i=1

ti(ti + 3)(n− 1)−
r∑

i=1

(ti + ti+1 + 4)(n− 1−mi − ti+k)

≥
r∑

i,j=1
i 6=j

2titj(n− 1) + 8k(m0 − 2k)− 4(n− 1) + 2t(m0 − 2k)

≥ 0.

Since
∑r

i,j=1
i6=j

2titj ≥ 4. Thus MoAe(G
′) ≥ MoAe(G) and all the pendant edges should be

attached at a single vertex say v1.
Claim II (The cycle is of order 3) Let G ∈ Un with cycle Cr = v1v2 . . . vrv1 along with
n − r pendant vertices attached to the vertex v1, r ≥ 5. Let G′ be the graph obtained by the
transformation, G′ = G− v2v3 − vr−1vr + v3v1 + vr−1v1. Then if r = 2k we have

MoAe(G
′)−MoAe(G) = (n− r + 5)(n− r + 2)(n− 1) + (2k − 4)4(n− 2k + 2)

+ 2(n− r + 6)(n− 2k + 2)

− (n− r + 3)(n− r)(n− 1)− (2k − 2)4(n− 2k)

− 2(n− r + 4)(n− 2k)

= 10(n− 1) + 4(n− r)(n− 1) + 8(2k − 3)

+ 4(n− r + 4)− 4(n− 2− 2(k − 1))

≥ 0.
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Since 10(n− 1) > 4(n− 2k). When r = 2k + 1

MoAe(G
′)−MoAe(G) = (n− r + 5)(n− r + 2)(n− 1) + (2k − 4)4(n− 2k + 1)

+ 2(n− r + 6)(n− 2k + 1)

− (n− r + 3)(n− r)(n− 1)− (2k − 2)4(n− (2k + 1))

− 2(n− r + 4)(n− (2k + 1))

= 10(n− 1) + 4(n− r)(n− 1) + 8(2k − 3)

+ 4(n− r + 4)− 4(n− 1− 2k) ≥ 0.

Since 10(n− 1) > 4(n− (2k + 1)).
Now by the sequential application of the above transformation, G is either of the form C3,n−3
or of the form C4,n−4. Now by Proposition 3.2, MoAe(C3,n−3) = n3 − 2n2 − n − 6 and
MoAe(C4,n−4) = n3 − 4n2 + 9n − 36. Thus MoAe(C3,n−3) > MoAe(C4,n−4), the cycle in G
should be C3. Hence the claim. �

Figure 2: The graphs G3 and G4 in Theorem 3.5.

Let G4 be a graph obtained by attaching n − 6 pendant edges and a path of length 2 at a
vertex to the cycle C4.

Proposition 3.4. Let G3 and G4 be graphs in Un as in Figure 2 Then

(a) MoAe(G3) = n3 − 4n2 + 5n− 8.

(b) MoAe(G4) = n3 − 6n2 + 17n− 36.

Proof. Let u be the vertex in the graph with d(u) > 2. For the (n−5) pendant edges incident on
u in G3, the contribution is (n− 1)2 and for the remaining one pendant edge, the contribution
is 3(n− 1). For the 2 edges in the cycle incident on u, the contribution is n(n− 3) and for the
non pendant bridge, the contribution is n(n− 3). Thus MoAe(G3) = (n− 5)(n− 1)2 + 3(n−
1) + n(n− 3) + 2n(n− 3) = n3 − 4n2 + 5n− 8. Similarly on G4, For the (n− 6) pendant edges
incident on u in G4, the contribution is (n− 1)(n− 2) and for the remaining one pendant edge,
the contribution is 3(n − 1). For the 2 edges in the cycle incident on u, the contribution is
(n− 1)(n− 4) and for the remaining two edges in the cycle, MoAe(e|G4) = 4(n− 4). For the
non pendant bridge the contribution is (n− 1)(n− 3). Thus, MoAe(G4) = (n− 6)(n− 1)(n−
2) + 3(n− 1) + (n− 1)(n− 3) + 2(n− 1)(n− 4) + 8(n− 4) = n3 − 6n2 + 17n− 36. �
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Now we establish the second largest upper bound of additively weighted edge Mostar index
of unicyclic graphs. Let Un|{H} denote the collection of all unicyclic graphs of order n without
the graph H.

Theorem 3.5. Let G ∈ Un|{C3,n−3}, n ≥ 8. Then MoAe(G) ≤ n3− 4n2 + 9n− 36. Moreover,
equality holds if and only if G ∼= C4,n−4.

Proof. Let G ∈ Un|{C3,n−3} attain the upper bound of additively weighted edge Mostar in-
dex. Then by Lemma 2.2, all the tree edges should be pendant edges and by the claims in
Theorem 3.3, all the pendant edges of G should be in a single vertex and the cycle of G can-
not be of length more than 5. Thus G must be one among the three graphs G1 = C4,n−4 or
G2 = C5,n−5 or G3, a graph obtained by inserting n − 5 pendant edges and a path of length
2 at a vertex of the cycle C3. Now by Proposition 3.2 and Proposition 3.4, MoAe(G1) =
n3− 4n2 + 9n− 36 and MoAe(G2) = n3− 6n2 + 13n− 40 and MoAe(G3) = n3− 4n2 + 5n− 8.
MoAe(G1)−MoAe(G2) = 2n2 − 4n+ 4 > 0 and MoAe(G1)−MoAe(G3) = 4n− 28 > 0 and
MoAe(G3)−MoAe(G2) = 2n2 − 8n+ 32 > 0 as n ≥ 8. Thus MoA(G) ≤ n3 − 4n2 + 9n− 36,
with equality if and only if G ∼= C4,n−4. �

Using the method described in Theorem 3.5 the third and fourth largest upper bounds of
additively weighted edge Mostar index of unicyclic graphs can be obtained.

Corollary 3.6. Let G ∈ Un|{C3,n−3, C4,n−4}. Then MoAe(G) ≤ n3−4n2+5n−8 with equality
holds if and only if G ∼= G3.

Corollary 3.7. Let G ∈ Un|{C3,n−3, C4,n−4, G3} with n ≥ 9. Then MoAe(G) ≤ n3 − 6n2 +
17n− 36 with equality holds if and only if G ∼= G4.

4 Cacti
In Section 4, we establish the maximum value of additively weighted edge Mostar index for
Cacti. Let C0(n, t) denotes the cacti bundle with t triangles and n − 2t − 1 pendant edges
incident on a single vertex.

Lemma 4.1. Let G = (V,E) be a cacti and Cr = v1v2...vrv1 be a cycle in G with components
of G− E(Cr), Gi = (Vi, Ei) attached on each vi, i = 1, . . . , r. Let

G′ = G−
r⋃

i=2

⋃
x∈Ai

xvi +

r⋃
i=2

⋃
x∈Ai

xv1,

where Ai = {u ∈ Gi : uvi ∈ Ei}, i = 1, . . . , r. Then MoAe(G
′) ≥MoAe(G). Moreover, equality

holds if and only if G ∼= G′.

Proof. Let |Ei| = mi, i = 1, 2, ..., r and
∑r

i=1mi + r = m. Let ti denotes the number of edges
in Gi incident to the vertex vi and

∑r
i=1 ti = t. For each edge e = xy ∈ Gi, i = 1, 2, 3..., r,

every edge which is closer to x or y in G should be closer to the same vertex x or y in G′ and
every edge which is of equidistant from both x and y in G should be equidistant from both x
and y in G′. Thus for e = xy ∈ Gi, |mx(e|G)−my(e|G)| = |mx(e|G′)−my(e|G′)|, i = 1, . . . , r.
For each edge e = xy ∈ Gi such that x, y 6= vi, i = 1, . . . , r, (d(x) + d(y))|G = (d(x) + d(y))|G′.
For the edges xvi ∈ Gi, i = 1, . . . , r, (d(x) + d(vi))|G = d(x) + ti + 2 and for the corresponding
transformed edge in G′ (d(x) + d(vi))|G′ = d(x) + t+ 2. Then

r∑
i=1

∑
e=xy∈Gi

(MoAe(e|G′)−MoAe(e|G)) =

r∑
i=1

∑
e=xvi∈Gi

(t− ti)|mvi(e|G)−mu(e|G)| > 0. (1)
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Now, for the edges vivi+1 ∈ Cr, we consider the following subcases.

Case I (r is even, r = 2k) For each edge ei = vivi+1 ∈ C2k, i = 1, 2, ..., 2k−1 and e2k = v2kv1
we have |mvi(e|G′)−mvi+1

(e|G′)| = m− 2k and

|mvi(e|G)−mvi+1(e|G)|
= ((mi +mi−1 + ...+mi−k+1)− (mi+1 +mi+2 + ...+mi+k)) = (m− ai) ≤ (m− 2k),

where ai ≥ 2k. For the edge ei = vivi+1 ∈ C2k, i 6= 1, 2k, (d(vi) +d(vi+1))|G = ti + ti+1 + 4 and
(d(vi)+d(vi+1))|G′ = 4. For the remaining two edges in C2k, (d(vi)+d(vi+1))|G = ti + ti+1 +4
and (d(vi) + d(vi+1))|G′ = 4 + t. Thus,

2k∑
i=1

∑
e=vivi+1∈C2k

(MoAe(e|G′)−MoAe(e|G))

= (8k + 2t)(m− 2k)−
2k∑
i=1

(ti + ti+1 + 4)(m− ai)

≥ (8k + 2t)(m− 2k)− (8k + 2t)(m− 2k) ≥ 0. (2)

From Equations (1) and (2), MoAe(G
′)−MoAe(G) ≥ 0 with equality if and only if there exist

a j, 1 ≤ j ≤ 2k such that mj = m− 2k and mi = 0, ∀i 6= j. Thus, MoA(G′)−MoA(G) ≥ 0
where the equality holds whenever G ∼= G′.

Case II (r is odd, r = 2k+1) For each edge ei = vivi+1 ∈ C2k+1, i 6= k we have |mvi(e|G′)−
mvi+1

(e|G′)| = m− 2k − 1 and for e = vkvk+1 |mvk(e|G′)−mvk+1
(e|G′)| = 0 and

|mvi(e|G)−mvi+1(e|G)| = ((mi +mi−1 + ...+mi−k+1)− (mi+1 +mi+2 + ...+mi+k))

= (m− bi) ≤ (m− 2k − 1−mi−k),

where bi ≥ 2k + 1. For the edge ei = vivi+1 ∈ C2k+1, i 6= 1, 2k + 1, (d(vi) + d(vi+1))|G =
ti + ti+1 + 4 and (d(vi) + d(vi+1))|G′ = 4. For the remaining two edges in C2k+1, (d(vi) +
d(vi+1))|G = ti + ti+1 + 4 and (d(vi) + d(vi+1))|G′ = 4 + t. Thus,

2k+1∑
i=1

∑
e=vivi+1∈C2k

(MoAe(e|G′)−MoAe(e|G))

= (8k + 2t)(m− 2k − 1)−
2k+1∑
i=1

(ti + ti+1 + 4)(m− bi)

≥ (8k + 2t)(m− 2k − 1)−
2k+1∑
i=1

(ti + ti+1 + 4)(m− 2k − 1−mi−k)

≥ −4(m− 2k − 1) +

2k+1∑
i=1

(ti + ti+1 + 4)(mi−k)

≥
2k+1∑
i=1

(ti + ti+1)(mi−k) ≥ 0. (3)

Since
∑2k+1

i=1 (mi−k) = (m − 2k − 1). From Equations (1) and (3) we have MoAe(G
′) −

MoAe(G) ≥ 0 with equality if and only if there exists a j, 1 ≤ j ≤ 2k + 1 such that
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mj = m − 2k − 1 and mi = 0, ∀i 6= j. Thus, MoA(G′) −MoA(G) ≥ 0 where the equal-
ity holds whenever G ∼= G′. �

Proposition 4.2. Let n ≥ 7. Then MoAe(C0(n, t)) = n3 + n2t− 3n2 − 3nt+ 2n+ 2t2 − 8t.

Proof. Let u be the vertex in C0(n, t) with d(u) > 2. For the (n − 2t − 1) pendant edges, the
contribution MoAe(e|C0(n, t)) = n(n + t − 2). For the 2t edges on the cycle incident on u,
MoAe(e|C0(n, t)) = (n + 1)(n + t − 4) and for the rest of the edges, the contribution is zero.
Thus MoAe(C0(n, t)) = (n− 2t− 1)n(n+ t− 2) + 2t(n+ 1)(n+ t− 4) = n3 +n2t− 3n2− 3nt+
2n+ 2t2 − 8t. �

Theorem 4.3. Let G ∈ C(n, t). Then MoAe(G) ≤ n3 + n2t − 3n2 − 3nt + 2n + 2t2 − 8t.
Moreover, equality holds if and only if G ∼= C0(n, t).

Proof. Let G = (V,E) ∈ C(n, t) is the graph with maximum additively weighted edge Mostar
index. By Lemma 2.2, all the bridges of G should be pendant edges and by Lemma 4.1 all
the cycles and pendant edges should be attached to a single vertex. Now we prove that all the
cycles should be of length 3.
Claim (All the cycles of G should be of length 3) Assume that |E| = m. Let Cr =
v1v2....vrv1 be a cycle of G with d(v1) > 2. Let G′ be the graph obtained from G by the
following transformation G′ = G − v2v3 − vr−1vr + v3v1 + vr−1v1. In G′ the degree of the
vertex v1 is increased by 2 and degrees of v2 and vr are decreased by 1. Except for v1, v2, vr,
the degrees of every other vertex remains the same. Also for the edge e = uv1 and u /∈ Cr,
|mu(e|G) − mv1(e|G)| = |mu(e|G′) − mv1(e|G′)|. For the edge v1v2 and v1vr, |mvj (e|G) −
mv1(e|G)| = (m− r) and |mvj (e|G′)−mv1(e|G′)| = (m− 1) for j = 2, r. For the edge v1v3 and
v1vr−1 in G′, |mv1

(e|G′)−mvj (e|G′)| = (m− (r−2)), j = 2, r−1. For the other edges xy ∈ Cr,
|mx(e|G)−my(e|G)| = (m− r), |mx(e|G′)−my(e|G′)| = (m− (r − 2)) when r is even. When
r is odd, the contribution of r− 1 edges is the same as in the previous case. For the remaining
one edge, |mx(e|G′)−my(e|G′)| = |mx(e|G)−my(e|G)| = 0. Thus

MoAe(G
′)−MoAe(G) =

∑
uv1

u/∈Cr

2(|mu(e|G)−mv1(e|G)|) + 8r0 + 4d(v1)

+ 2(d(v1) + 3)(m− 1)− 4(m− r) > 0,

where r0 =

{
r − 2, when r is even
r − 3, when r is odd

, and since m − 1 > m − r and all other quantitites are

positive. Thus by applying the transformation repeatedly, we conclude that every cycle of G is
either of order 3 or 4. Now we will prove that the cycle should be a 3 cycle. Let C4 = v1v2v3v4v1
be the 4 cycle in G. Let G′ = G − v2v3 + v1v3, as in the previous case for every edge e = xy
which is not in C4, |mx(e|G′)−my(e|G′)| = |mx(e|G)−my(e|G)|. In G′ degree of v1 is increased
by 1 and degree of v2 is decreased by 1 and for all the other vertices the degree remains same.
Thus:

MoAe(G
′)−MoAe(G) =

∑
uv1

u/∈C4

(|mu(e|G)−mv1(e|G)|)

+ 4(d(v1) + 2) + (d(v1) + 4)(m− 3)− 8(m− 4) > 0,

since there is at least two cycles incidenting on v1. i.e, d(v1) ≥ 4. If there is exactly one cycle
at v1, by direct calculation MoAe(G

′)−MoAe(G) > 0. Thus G cannot have a cycle of length
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Figure 3: Graph with largest additively weighted edge Mostar index among cacti.

more than 3. Thus G ∼= C0(n, t). By Proposition 4.2, MoAe(C0(n, t)) = n3 +n2t− 3n2− 3nt+
2n+ 2t2 − 8t. �

5 Application of additively weighted edge Mostar index

Figure 4: Octane isomers.

In this section, we examine the correlation between the additively weighted edge Mostar
index and some chemical properties of octane isomers. All the experimental values of the chem-
ical compounds are taken from [24]. The correlation between additively weighted edge Mostar
index and acentric factor is about -0.9835 and the correlation between additively weighted edge



Iranian Journal of Mathematical Chemistry 16 (1) (2025) 51− 64 61

Mostar index and entropy is -0.9174. This indicates a strong linear relationship among addi-
tively weighted edge Mostar index and acentric factor, the entropy of the octane isomers. We
also present a comparative study of the additively weighted edge Mostar index with some other
topological indices such as Szeged index (Sz), Mostar index (Mo), edge Mostar index (Moe),
the first eccentric connectivity index (S1), second eccentric connectivity index (S2), the first
status connectivity index (ζ1), second status connectivity index (ζ2), weighted Szeged index
(wSz), weighted edge Szeged index (wSze) and weighted PI index (wPI). We found that the
additively weighted edge Mostar index is a better predictor of the acentric factor and entropy
of octane isomers compared to almost all other topological indices; see Table 2.

Table 1: Acentric factor and entropy of additively weighted edge Mostar index and other topological
indices of the octane isomers.

No Acent Factor Entropy MoAe Sz Mo Moe S1 S2 ζ1 ζ2 wSz wSze wPI
1 0.4 111.67 84 84 24 24 280 2856 74 200 322 140 196
2 0.38 109.84 100 79 26 26 260 2441 65 154 324 128 224
3 0.37 111.26 104 76 28 28 248 2224 63 144 318 122 224
4 0.37 109.32 112 75 30 30 244 2157 61 136 316 120 224
5 0.36 109.43 120 72 32 32 228 1865 56 113 306 110 224
6 0.34 103.42 132 71 30 30 224 1796 54 105 330 106 256
7 0.35 108.02 128 70 32 32 228 1853 54 105 318 108 240
8 0.34 106.98 120 71 30 30 240 2052 56 113 320 110 240
9 0.36 105.72 116 74 28 28 212 1609 52 97 326 116 240
10 0.32 104.74 148 67 34 34 216 1664 52 97 322 98 256
11 0.34 106.59 124 68 32 32 232 1940 54 105 314 104 240
12 0.33 106.06 136 67 34 34 196 1349 43 66 308 98 240
13 0.31 101.48 156 64 36 36 208 1520 45 72 314 90 256
14 0.30 101.31 152 63 34 34 192 1292 41 60 326 88 272
15 0.31 104.09 148 66 32 32 204 1461 43 66 332 94 272
16 0.29 102.06 164 62 36 36 212 1597 43 66 324 86 272
17 0.32 102.39 144 65 34 34 200 1420 41 60 320 96 256
18 0.26 93.06 180 58 36 36 176 1060 34 40 338 72 304

Table 2: Correlation coefficient (R), coefficient of determination(R2) and standard error of estimates
(SEE) between chemical properties of octane isomers and topological indices.

Acentric Factor Entropy
R R2 SEE R R2 SEE

MoAe -0.9835 0.9674 0.0065 -0.9174 0.8415 1.8537
Sz 0.9732 0.9471 0.0083 0.8778 0.7705 2.2308
Mo -0.8874 0.7874 0.0166 -0.7549 0.5699 3.0539
Moe -0.8874 0.7874 0.0166 -0.7549 0.5699 3.0539
S1 0.8823 0.7785 0.0170 0.8545 0.7301 2.4193
S2 0.8787 0.7721 0.0172 0.8382 0.7026 2.5395
ζ1 0.9328 0.8701 0.0130 0.8779 0.7707 2.2300
ζ2 0.9157 0.8384 0.0145 0.8458 0.7153 2.4845
wSz -0.4161 0.1732 0.0328 -0.5597 0.3133 3.8588
wSze 0.9845 0.9693 0.0063 0.9046 0.8184 1.9844
wPI -0.9629 0.9271 0.0097 -0.9543 0.9107 1.3917
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Figure 5: Graphs with smallest and largest additively weighted edge Mostar index among
bicyclic graphs.

6 Conclusion
The additively weighted edge Mostar index is a recently defined topological index, and as a
result, only a few studies are available in the literature. In this paper, we have computed the
extrema of additively weighted edge Mostar index for trees and unicyclic graphs. We also found
the upper bound of the additively weighted edge Mostar index for cacti of a given order. We
propose the following problems for further studies:

Let Θa,b,c be the bicyclic graph with two vertices x and y of degree 3 having three paths of
lengths a, b, c respectively connecting x and y. Let φa,b,c is a bicyclic graph with two cycles of
lengths a and b incident on a vertex x along with c pendant edges attached at x. We propose
the following conjectures on additively weighted edge Mostar index of bicyclic graphs.

Conjecture 6.1. Let G be a bicyclic graph of order n ≥ 5. Then MoAe(G) ≥ 8n− 8, equality
holds if and only if G ∼= Θn−3,2,2.

Conjecture 6.2. Let G be a bicyclic graph of order n ≥ 5. Then MoAe(G) ≤ n3−n2−4n−8,
equality holds if and only if G ∼= φ3,3,n−5.
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