A Study of Vertex-Degree Function Indices via Branching Operations on Trees

Document Type : Research Paper

Authors

Instituto de Matem\'aticas‎, ‎Universidad de Antioquia‎, ‎Medell\'{\i}n‎, ‎Colombia

10.22052/ijmc.2024.254896.1865

Abstract

‎Let $G$ be a graph with vertex set $V\left(G \right)$‎. ‎The vertex-degree function index $H_{f}\left(G \right) $ is defined on $G$ as‎: ‎$H_{f}\left(G \right) =\sum_{u\in V\left(G \right)}f\left(d_{u} \right)‎,$
‎where $f\left(x \right) $ is a function defined on positive real numbers‎. ‎Our main concern in this paper is to study $H_{f}$ over the set $\mathcal{T}_{n}$ of trees with $n$ vertices‎, ‎over the set $\mathcal{T}_{n,k}$ of trees with $n$ vertices and $k$ branching vertices‎, ‎and over the set $\mathcal{T}^{p}_{n}$ of trees with $n$ vertices and $p$ pendant vertices‎. ‎Namely‎, ‎we will show in each of these sets of trees that it is possible via branching operations to construct a strictly monotone sequence of trees that reaches the extremal values of $H_{f}$‎, ‎when $f\left( x+1\right)-f\left( x\right) $ is a strictly increasing function‎.

Keywords

Main Subjects


[1] Y. Yao, M. Liu, F. Belardo and C. Yang, Unified extremal results of topological indices and spectral invariants of graphs, Discrete Appl. Math. 271 (2019) 218–232, https://doi.org/10.1016/j.dam.2019.06.005.
[2] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total \pi-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538, https://doi.org/10.1016/0009-2614(72)85099-1.
[3] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184–1190, https://doi.org/10.1007/s10910-015-0480-z.
[4] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208.
[5] X. Li and Y. Shi, (n;m)-graphs with maximum zeroth-order general Randic index for \alpha (-1; 0), MATCH Commun. Math. Comput. Chem. 62 (2009) 163–170.
[6] S. Bermudo, R. Cruz and J. Rada, Vertex-degree function index on tournaments, Commun. Comb. Optim. 10 (2025) 443–452.
[7] I. Tomescu, Properties of connected (n;m)-graphs extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021) 285–294.
[8] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022) 109–114, https://doi.org/10.46793/match.87-1.109T.
[9] I. Tomescu, Extremal vertex-degree function index for trees and unicyclic graphs with given independence number, Discrete Appl. Math. 306 (2022) 83–88, https://doi.org/10.1016/j.dam.2021.09.028.
[10] D. He, Z. Ji, C. Yang and K. C. Das, Extremal graphs to vertex degree function index for convex functions, Axioms 12 (2023) p. 31, https://doi.org/10.3390/axioms12010031.
[11] X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57–62.
[12] S. Khalid and A. Ali, On the zeroth-order general Randic index, variable sum exdeg index and trees having vertices with prescribed degree, Discrete Math. Algorithms Appl. 10 (2018) p. 1850015, https://doi.org/10.1142/S1793830918500155.