Iranian Journal of Mathematical Chemistry

DOI: 10.22052/IJMC.2024.254896.1865 Vol. 16, No. 1, 2025, pp. 1-12 Research Paper

A Study of Vertex-Degree Function Indices via Branching Operations on Trees

Roberto Cruz¹, Carlos Espinal¹ and Juan Rada¹

¹Instituto de Matemáticas, Universidad de Antioquia, Medellín, Colombia

Keywords:

Vertex-degree function index, Trees, Branching operations

AMS Subject Classification (2020):

05C09; 05C20; 05C35

Article History: Received: 6 May 2024 Accepted: 15 September 2024

Abstract

Let G be a graph with vertex set V(G). The vertex-degree function index $H_{f}(G)$ is defined on G as:

$$H_f(G) = \sum_{u \in V(G)} f(d_u),$$

where f(x) is a function defined on positive real numbers. Our main concern in this paper is to study H_f over the set \mathcal{T}_n of trees with n vertices, over the set $\mathcal{T}_{n,k}$ of trees with n vertices and k branching vertices, and over the set \mathcal{T}_n^p of trees with nvertices and p pendant vertices. Namely, we will show in each of these sets of trees that it is possible via branching operations to construct a strictly monotone sequence of trees that reaches the extremal values of H_f , when f(x+1) - f(x) is a strictly increasing function.

 \bigodot 2025 University of Kashan Press. All rights reserved.

1 Introduction

Let G be a simple connected graph with vertex set V(G). The degree of a vertex $u \in V(G)$ will be denoted by $d_u = d_u(G)$. We say that the vertex $u \in V(G)$ is a branching vertex if $d_u \ge 3$, while it is a pendant vertex if $d_u = 1$. The vertex-degree function index $H_f(G)$ is defined on G as:

$$H_{f}\left(G\right) = \sum_{u \in V(G)} f\left(d_{u}\right),$$

where f(x) is a function defined on positive real numbers [1]. For example, the first Zagreb index $\mathcal{M}_1(G) = \sum_{u \in V(G)} d_u^2$ is a special case when $f(x) = x^2$ [2], the forgotten index $F(G) = \sum_{u \in V(G)} d_u^3$ is a special case when $f(x) = x^3$ [3]. More generally, the zeroth-order general

*Corresponding author

Academic Editor: Boris Furtula

E-mail addresses: roberto.cruz@udea.edu.co (R. Cruz), alejandro.espinal@udea.edu.co (C. Espinal), pablo.rada@udea.edu.co (J. Rada)

Randić index ${}^{0}\mathcal{R}_{\alpha}(G) = \sum_{u \in V(G)} d_{u}^{\alpha}$, where $\alpha \notin \{0,1\}$ is a real number, is a particular case when $f(x) = x^{\alpha}$ [4, 5]. For recent results on the degree function index of graphs we refer to [6-9].

We are particularly interested in the vertex-degree function index over trees, i.e., connected graphs with no cycles. Let T be a tree. A branch at $u \in V(T)$ is a maximal subtree containing u as an end vertex. Hence, the number of branches at u is d_u . We say that tree U is obtained from tree T by a branching operation, denoted as $U = \beta(T)$, when U is obtained from T by moving one branch of T at $u \in V(T)$ to another vertex $v \in V(T)$ (see Figure 1).

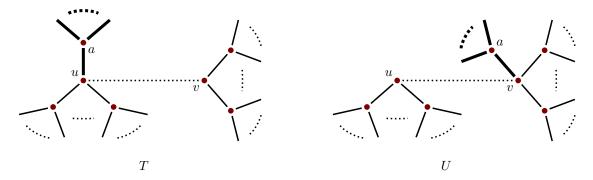


Figure 1: U is obtained from T by a branching operation.

Let us denote by \mathcal{T}_n the set of trees with *n* vertices and let $\mathcal{F} \subseteq \mathcal{T}_n$. We define the following relation on \mathcal{F} : if $S, T \in \mathcal{F}$ we write $S \succ T$ in \mathcal{F} if and only if there exists a sequence $\{U_j\}_{j=1}^k \subseteq \mathcal{F}$ such that $U_0 = S$, $U_k = T$, $U_j = \beta(U_{j-1})$ for all $1 \le j \le k$, and

$$H_f(S) = H_f(U_0) > H_f(U_1) > \dots > H_f(U_k) = H_f(T).$$

In this case we say that $\{U_j\}_{j=1}^k$ is a strictly monotone sequence of trees. Our main concern in this paper is to study the relation \succ in \mathcal{F} on three significant classes:

- 1. $\mathcal{F} = \mathcal{T}_n$, the set of trees with *n* vertices;
- 2. $\mathcal{F} = \mathcal{T}_{n,k}$, the set of trees with *n* vertices and *k* branching vertices;
- 3. $\mathcal{F} = \mathcal{T}_n^p$, the set of trees with *n* vertices and *p* pendant vertices.

We will show that given a tree in \mathcal{F} , it is possible via branching operations to construct a strictly monotone sequence of trees in \mathcal{F} that reach the extremal values of H_f , when f(x+1) – f(x) is a strictly increasing function, a property satisfied by strictly convex functions. Examples of such functions are $f(x) = x^{\alpha}$, when $\alpha > 0$, which induce the general zeroth-order Randić indices ${}^{0}\mathcal{R}_{\alpha}$. From this general approach, it is possible to deduce several well-known results on the extremal value problem of H_f over the classes of trees mentioned above [10–12].

Variation of H_f under branching operations on trees $\mathbf{2}$

If $T \in \mathcal{T}_n$, then the degree sequence of T is expressed in the form (d_1, d_2, \ldots, d_n) , where $d_1 \geq d_2 \geq \cdots \geq d_n$ are the degrees of the vertices of T in descending order. Note that $\sum_{i=1}^{n} d_i = 2(n-1)$. Moreover, any non-increasing sequence (e_1, e_2, \dots, e_n) of positive integers such that $\sum_{i=1}^{n} e_i = 2(n-1)$ is the degree sequence of some tree in \mathcal{T}_n .

In this section we study the variation of H_f when a special branching operation is applied to a tree T. Let $i, j \in \{1, ..., n\}$ such that

$$i < j, d_i > d_{i+1}, d_{j-1} > d_j, \text{ and } d_i > d_j + 1.$$
 (1)

Consider **Operation I**:

$$(d_1, \dots, d_i, \dots, d_j, \dots, d_n) \rightsquigarrow (d_1, \dots, d_i - 1, \dots, d_j + 1, \dots, d_n),$$

$$(2)$$

where only the positions i, j are modified. By conditions given in (1), the sequence on the right of (2) is non-increasing. In fact, the transformation given in (2) corresponds to a branching operation on T, by moving a branch of T at vertex i to the vertex j.

In the other direction, let $j \in \{1, \ldots, n\}$ such that

$$j > 1 \text{ and } d_j > d_{j+1}.$$
 (3)

Consider **Operation II**:

$$(d_1, \dots, d_j, \dots, d_n) \rightsquigarrow (d_1 + 1, \dots, d_j - 1, \dots, d_n), \tag{4}$$

where only the positions 1, j are modified. By condition (3), the sequence on the right of (4) is non-increasing. The transformation given in (4) corresponds to a branching operation on T, by moving a branch of T at vertex j to the vertex 1.

We will assume throughout this paper that f(x + 1) - f(x) is a strictly increasing function. Clearly, every strictly convex function f(x) satisfies this property.

Example 2.1. Consider the function $f(x) = x^2 + \lfloor x \rfloor$. Then f(x) is not convex since it is discontinuous at each positive integer. However, f(x+1) - f(x) = 2x+2 is a strictly increasing function.

With our next result, we show that H_f is strictly monotone with respect to the operations defined above.

Theorem 2.2. Let T be a tree with degree sequence (d_1, d_2, \ldots, d_n) .

- 1. Assume that i, j satisfy conditions given in (1). If U is the tree obtained from T by operation I, then $H_f(T) > H_f(U)$;
- 2. Assume that j satisfies condition (3). If V is the tree obtained from T by operation II, then $H_f(T) < H_f(V)$.

Proof. Let h(x) = f(x+1) - f(x).

1. If U is obtained from T by operation I, then it follows from (2) that

$$H_f(T) - H_f(U) = f(d_i) - f(d_i - 1) + f(d_j) - f(d_j + 1)$$

= $h(d_i - 1) - h(d_j) > 0,$

since $d_i > d_j + 1$ and h(x) is strictly increasing.

2. If V is obtained from T by operation II, then by (4),

$$H_f(T) - H_f(V) = f(d_1) - f(d_1 + 1) + f(d_j) - f(d_j - 1)$$

= $h(d_j - 1) - h(d_1) < 0,$

since $d_1 \ge d_j > d_j - 1$ and h(x) is strictly increasing.

3 Trees with a fixed number of vertices

We first show that it is possible to reach the path P_n from any tree $T \neq P_n$, by a sequence of branching tree operations which have strictly decreasing value of H_f .

Theorem 3.1. If $T \in \mathcal{T}_n$ and $T \neq P_n$, then $T \succ P_n$ in \mathcal{T}_n .

Proof. Let (d_1, d_2, \ldots, d_n) be the degree sequence of T. Since $T \neq P_n$, then $\Delta(T) \geq 3$. Choose i such that $d_i = \Delta$ and $d_{i+1} < \Delta$. On the other hand, choose j such that $d_j = 1$ and $d_{j-1} > 1$. Then $d_i \geq 3 > 2 = d_j + 1$. Consequently, i < j satisfy conditions given in (1), so by Theorem 2.2, after we apply operation I to T we obtain a tree $U_1 \in \mathcal{T}_n$ such that $H_f(T) > H_f(U_1)$. If $U_1 = P_n$ we are done. Otherwise, we repeat the previous argument to construct a tree $U_2 \in \mathcal{T}_n$, such that $H_f(U_1) > H_f(U_2)$. Eventually, after a finite number of steps we arrive at $U_k = P_n$, where $U_j = \beta(U_{j-1})$ for all $1 \leq j \leq k$ and

$$H_f(T) = H_f(U_0) > H_f(U_1) > H_f(U_2) > \dots > H_f(U_k) = H_f(P_n).$$

In the other direction, we can obtain the star S_n from any tree $T \neq S_n$, by a sequence of trees which have strictly increasing value of H_f .

Theorem 3.2. If $T \in \mathcal{T}_n$ and $T \neq S_n$, then $S_n \succ T$ in \mathcal{T}_n .

Proof. Since $T \neq S_n$, the degree sequence of T has the form $(d_1, \ldots, d_j, 1, \ldots, 1)$, where j > 1 satisfies $d_1 \geq d_j > 1 = d_{j+1}$. Hence, j satisfies condition (3), so by Theorem 2.2, after applying operation II to the tree T we obtain a tree $V_1 \in \mathcal{T}_n$ such that $H_f(V_1) > H_f(T)$. If $V_1 = S_n$ we are done. Otherwise, we repeat the previous argument to construct a tree $V_2 \in \mathcal{T}_n$ such that $H_f(V_2) > H_f(V_1)$. After a finite number of steps we arrive at a tree $V_k \in \mathcal{T}_n$ such that $V_k = S_n$, where $V_j = \beta(V_{j-1})$ for all $1 \leq j \leq k$, and

$$H_f(S_n) = H_f(V_k) > \dots > H_f(V_2) > H_f(V_1) > H_f(V_0) = H_f(T).$$

Example 3.3. In Table 1 we illustrate the sequences of trees given in Theorems 3.1 and 3.2. Note that in each step we 'move' the maximal subtree at u which contains the vertex a, to the vertex v.

Remark 1. Note that Theorems 3.1 and 3.2 are stronger results than [10, Theorems 4 and 8], since they not only present the extremal trees, but also state the existence of a strictly monotone sequence of trees that reach extreme values of H_f , starting from any tree in \mathcal{T}_n .

Recall that the zeroth-order general Randić index is defined as ${}^{0}\mathcal{R}_{\alpha}(T) = H_{f}(G)$ where $f(x) = x^{\alpha}$. In the next result, we affirm that from any tree in \mathcal{T}_{n} it is possible to construct a strictly monotone sequence of trees that reach maximum and minimum trees with respect to the zeroth-order general Randić index, a result obtained in [11].

Corollary 3.4. Let $T \in \mathcal{T}_n$.

1. If $T \neq P_n$, then $T \succ P_n$ in \mathcal{T}_n if $\alpha \in (-\infty, 0) \cup (1, +\infty)$ and, $P_n \succ T$ in \mathcal{T}_n if $\alpha \in (0, 1)$.

2. If
$$T \neq S_n$$
, then $S_n \succ T$ in \mathcal{T}_n if $\alpha \in (-\infty, 0) \cup (1, +\infty)$ and $T \succ S_n$ in \mathcal{T}_n if $\alpha \in (0, 1)$.

Proof. For $\alpha \in (-\infty, 0) \cup (1, +\infty)$ it holds that f(x+1) - f(x) is strictly increasing function. Statements 1 and 2 follow from Theorems 3.1 and 3.2, respectively.

On the other hand, since f(x+1) - f(x) is strictly decreasing function if $\alpha \in (0,1)$, we apply Theorems 3.1 and 3.2 to $H_{\overline{f}}(G)$ with $\overline{f}(x) = -x^{\alpha}$.

4 Trees with fixed number of vertices and branching vertices

Let us denote by $\mathcal{T}_{n,k}$ the set of trees with n vertices and k branching vertices.

Lemma 4.1. The set $\mathcal{T}_{n,k}$ is nonempty if and only if $n \ge 2k+2$. If n = 2k+2, then any tree $T \in \mathcal{T}_{2k+2,k}$ has degree sequence $(\underbrace{3,\ldots,3}_{k},\underbrace{1,\ldots,1}_{k+2})$.

Proof. Recall that if a tree $T \in \mathcal{T}_{n,k}$ has p pendant vertices and \mathcal{X} is the set of branching vertices, then

$$p - 2 = \sum_{v \in \mathcal{X}} (d_v - 2) \ge k.$$
(5)

If n_2 is the number of vertices of degree 2 in T, then using (5) we have:

$$n = k + n_2 + p \ge 2k + n_2 + 2 \ge 2k + 2.$$
(6)

On the other hand, from (6),

$$0 \le n_2 \le n - 2k - 2$$

If n = 2k + 2, then for any tree $T \in \mathcal{T}_{2k+2,k}$, $n_2 = 0$ and p = k + 2. From (5)

$$k = \sum_{v \in \mathcal{X}} \left(d_v - 2 \right),$$

which implies that $d_v = 3$ for each $v \in \mathcal{X}$. Then, any tree $T \in \mathcal{T}_{2k+2,k}$ has degree sequence $(\underbrace{3,\ldots,3}_{k},\underbrace{1,\ldots,1}_{k+2})$.

Example 4.2. The trees in Figure 2 belong to $\mathcal{T}_{2k+2,k}$.

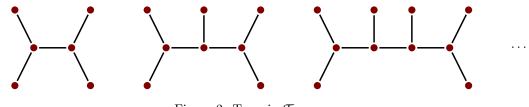


Figure 2: Trees in $\mathcal{T}_{2k+2,k}$.

In what follows in this section we consider the set $\mathcal{T}_{n,k}$ with n > 2k + 2. We shall see that the trees in

$$\mathcal{A} = \left\{ T \in \mathcal{T}_{n,k} \colon T \text{ has degree sequence}\left(\underbrace{3,\ldots,3}_{k},\underbrace{2,\ldots,2}_{n-2k-2},\underbrace{1,\ldots,1}_{k+2}\right) \right\},\$$

have the minimal value of H_f among all trees in $\mathcal{T}_{n,k}$.

Lemma 4.3. Let $A \in \mathcal{T}_{n,k}$. Then $A \in \mathcal{A}$ if and only if $\Delta(A) = 3$.

Sequence in Theorem 3.1	Sequence in Theorem 3.2
$\begin{array}{c c} & & & \\ & & \\ \hline \\ & \\ & \\ & \\ & \\ & \\ &$	a - u - v V_0
$\begin{array}{c} a \bullet \bullet \bullet \\ u \\ u \\ U_1 \end{array} $	
v u	v u a V_2
u u u u u u u u u u	V_{3}
v U_4	V_4
U_5	V_5

Table 1: Decreasing and increasing sequences of trees in \mathcal{T}_{11} .

Proof. Clearly, $A \in \mathcal{A}$ implies $\Delta(A) = 3$. Conversely, assume that $A \in \mathcal{T}_{n,k}$ and $\Delta(A) = 3$. Then the degree sequence of A is of the form $(3, \ldots, 3, 2, \ldots, 2, 1, \ldots, 1)$. By relation (5), \widetilde{m}

p = k + 2, and since k + m + p = n, we deduce that m = n - 2k - 2. Consequently, $A \in \mathcal{A}$.

Theorem 4.4. If $T \in \mathcal{T}_{n,k}$ and $T \notin \mathcal{A}$, then there exists $A \in \mathcal{A}$ such that $T \succ A$ in $\mathcal{T}_{n,k}$.

Proof. Let (d_1, d_2, \ldots, d_n) be the degree sequence of T. Since $T \in \mathcal{T}_{n,k}$ and $T \notin \mathcal{A}$, then by Lemma 4.3, $\Delta \ge 4$. Let *i* such that $d_i = \Delta > d_{i+1}$, and j > 1 such that $d_j = 1$ but $d_{j-1} > 1$. Note that $d_i \ge 4 > 2 = d_j + 1$. Hence conditions given in (1) hold and so by Theorem 2.2, after applying operation I to the tree T we find a tree $U_1 \in \mathcal{T}_n$ such that $H_f(T) > H_f(U_1)$. Note that since $d_i \ge 4$ and $d_j = 1$ in T, then $U_1 \in \mathcal{T}_{n,k}$. If $U_1 \in \mathcal{A}$ then we are done. Otherwise, using a similar argument as before, we construct a tree $U_2 \in \mathcal{T}_{n,k}$ such that $H_f(U_2) > H_f(U_1)$. After a finite number of steps we arrive at a tree $U_s \in \mathcal{T}_{n,k}$ such that $U_s = A \in \mathcal{A}, U_j = \beta(U_{j-1})$ for all $j = 1, \ldots, s$ and

$$H_f(T) = H_f(U_0) > H_f(U_1) > \dots > H_f(U_s) = H_f(A).$$

Now we consider the set

1

$$\mathcal{B} = \left\{ T \in \mathcal{T}_{n,k} \colon T \text{ has degree sequence } \left(n - 2k + 1, \underbrace{3, \dots, 3}_{k-1}, \underbrace{1, \dots, 1}_{n-k} \right) \right\}.$$

Theorem 4.5. If $T \in \mathcal{T}_{n,k}$ and $T \notin \mathcal{B}$, then there exists $B \in \mathcal{B}$ such that $B \succ T$ in $\mathcal{T}_{n,k}$.

Proof. Let (d_1, d_2, \ldots, d_n) be the degree sequence of T. Recall that $\Delta(T) \geq 3$ and assume that T has a vertex of degree 2. Choose j > 1 such that $d_j = 2$ and $d_{j+1} = 1$. Hence, by Theorem 2.2, after applying operation II to the tree T we obtain a tree $V_1 \in \mathcal{T}_n$ such that $H_f(V_1) > H_f(T)$. Since $d_1 = \Delta(T) \ge 3$ and $d_j = 2$, it is clear that $V_1 \in \mathcal{T}_{n,k}$. So repeating this procedure as many times as necessary, we arrive at a tree $V_r \in \mathcal{T}_{n,k}$ without vertices of degree 2, such that $V_j = \beta(V_{j-1})$, for all $1 \le j \le r$ and

$$H_{f}(V_{r}) > \cdots > H_{f}(V_{1}) > H_{f}(V_{0}) = H_{f}(T).$$

Since $n_2(V_r) = 0$, the number of pendant vertices is n - k. Let (e_1, e_2, \ldots, e_n) be the degree sequence of V_r . If $e_2 = 3$ then

$$e_1 = 2(n-1) - 3(k-1) - (n-k) = n - 2k + 1,$$

and $V_r \in \mathcal{B}$. If $e_2 \geq 4$ then choose j > 1 such that $e_j \geq 4$ and $e_j > e_{j+1}$. It follows from Theorem 2.2 that the tree V_{r+1} obtained from V_r by operation II satisfies $H_f(V_{r+1}) > H_f(V_r)$. Moreover, since $e_j \geq 4$ then $V_{r+1} \in \mathcal{T}_{n,k}$ and has no vertices of degree 2. Repeating this procedure as many times as necessary we arrive at a tree $V_s \in \mathcal{T}_{n,k}$ with degree sequence of the form $(a, \underbrace{3, \ldots, 3}_{k-1}, \underbrace{1, \ldots, 1}_{n-k})$, where $V_{r+j} = \beta(V_{r+j-1})$ for all $1 \le j \le s-r$ and

$$H_f(V_s) > \dots > H_f(V_{r+1}) > H_f(V_r) > \dots > H_f(V_1) > H_f(V_0) = H_f(T).$$

Finally, since the sum of all degrees of V_s is equal to 2(n-1), we deduce that a = n - 2k + 1. Hence, $V_s \in \mathcal{B}$.

Example 4.6. In Table 2 we illustrate the sequences of trees given in Theorems 4.4 and 4.5. Note that in each step we 'move' the maximal subtree at u which contains the vertex a, to the vertex v.

The next result states the existence of a strictly monotone sequence of trees that reach maximum and minimum trees with respect to the zeroth-order general Randić index in $\mathcal{T}_{n,k}$. This result implies a solution of the extremal problem solved in [12] with respect to the zerothorder Randić index over the class $\mathcal{T}_{n,k}$.

Corollary 4.7. Let $T \in \mathcal{T}_{n,k}$ with n > 2k + 2.

- 1. If $T \notin A$, then there exists $A \in A$ such that $T \succ A$ in $\mathcal{T}_{n,k}$ if $\alpha \in (-\infty, 0) \cup (1, +\infty)$ and, $A \succ T$ in $\mathcal{T}_{n,k}$ if $\alpha \in (0,1)$.
- 2. If $T \notin \mathcal{B}$, then there exists $B \in \mathcal{B}$ such that $B \succ T$ in $\mathcal{T}_{n,k}$ if $\alpha \in (-\infty, 0) \cup (1, +\infty)$ and, $T \succ B$ in $\mathcal{T}_{n,k}$ if $\alpha \in (0,1)$.

Trees with fixed number of vertices and pendant vertices $\mathbf{5}$

Let us denote by \mathcal{T}_{p}^{p} the set of trees on n vertices and p pendant vertices. If p = n - 1 then $\mathcal{T}_n^p = \{S_n\}$, and if p = 2, then $\mathcal{T}_n^p = \{P_n\}$. If p = 3 and $T \in \mathcal{T}_n^3$, by (5), T has exactly one branching vertex of degree 3 and $n_2 = n - 4$

vertices of degree 2. It means that any tree $T \in \mathcal{T}_n^3$ has degree sequence

$$(3, \underbrace{2, \dots, 2}_{n-4}, 1, 1, 1)$$

with $H_f(T) = f(3) + (n-4)f(2) + 3f(1)$.

where a

We assume throughout this section that $4 \le p \le n-2$. Let

$$\mathcal{C} = \left\{ T \in \mathcal{T}_n^p \colon T \text{ has degree sequence } \left(\underbrace{a+1,\ldots,a+1}_r, \underbrace{a,\ldots,a}_s, \underbrace{1,\ldots,1}_p \right) \right\},\$$
$$= \lfloor \frac{n-2}{n-p} \rfloor + 1, r = n-2 - (n-p) \lfloor \frac{n-2}{n-p} \rfloor, \text{ and } s = (n-p) \lfloor \frac{n-2}{n-p} \rfloor - p + 2.$$

Theorem 5.1. Let $T \in \mathcal{T}_n^p$ such that $T \notin \mathcal{C}$. Then there exists $C \in \mathcal{C}$ such that $T \succ C$ in \mathcal{T}_n^p .

Proof. Let (d_1, d_2, \ldots, d_n) be the degree sequence of T. Let j such that $d_j \ge 2$ and $d_{j+1} = 1$. Let i such that $d_1 = d_i > d_{i+1}$. Note that i < j, otherwise, $T = S_n$ which contradicts the fact that $p \leq n-2$. If $d_i - d_j \geq 2$ then, by Theorem 2.2, there exists $U_1 = \beta(T) \in \mathcal{T}_n^p$ such that $H_f(U_1) > H_f(T)$. Assume that U_1 has degree sequence (e_1, e_2, \ldots, e_n) . Let j such that $e_j \ge 2$ and $e_{j+1} = 1$. Let i such that $e_1 = e_i > e_{i+1}$. If $e_i - e_j \ge 2$, then as before, there exists $U_2 = \beta(U_1) \in \mathcal{T}_n^p$ such that $H_f(U_2) > H_f(U_1)$. Repeating this process we arrive after a finite number of steps to a tree $U_k \in \mathcal{T}_n^p$ such that

$$H_f(T) > H_f(U_1) > \dots > H_f(U_k),$$

where $U_i = \beta(U_{i-1})$, for all $1 \le j \le k$, and U_k has degree sequence of the form

$$\left(\underbrace{a+1,\ldots,a+1}_{r},\underbrace{a,\ldots,a}_{s},\underbrace{1,\ldots,1}_{p}\right)$$
.

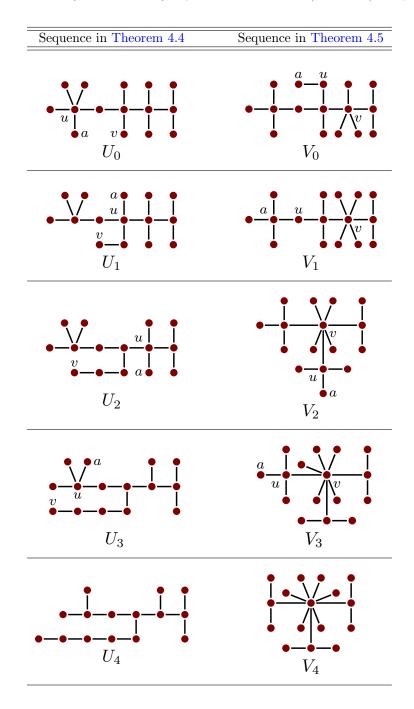


Table 2: Decreasing and increasing sequences of trees in $\mathcal{T}_{15,4}$ and $\mathcal{T}_{16,4}$, respectively.

From the relations

$$r+s+p=n,$$

and

$$r(a+1) + sa + p = 2(n-1),$$

it follows that $a = \lfloor \frac{n-2}{n-p} \rfloor + 1$, $r = n-2 - (n-p) \lfloor \frac{n-2}{n-p} \rfloor$, and $s = (n-p) \lfloor \frac{n-2}{n-p} \rfloor - p + 2$. In particular, $U_k \in \mathcal{C}$, so the proof is complete.

Now consider the set

$$\mathcal{D} = \left\{ T \in \mathcal{T}_n^p \colon T \text{ has degree sequence } \left(p, \underbrace{2, \dots, 2}_{n-p-1}, \underbrace{1, \dots, 1}_p \right) \right\}.$$

Theorem 5.2. Let $T \in \mathcal{T}_n^p$ and $T \notin \mathcal{D}$. Then there exists $D \in \mathcal{D}$ such that $D \succ T$ in \mathcal{T}_n^p .

Proof. Since $p \ge 4$ then $T \ne P_n$, so $\Delta(T) \ge 3$. Assume that T has degree sequence (d_1, d_2, \ldots, d_n) . Choose j such that $d_j \ge 3$ but $1 \le d_{j+1} \le 2$. If j = 1, then the degree sequence of T is of the form $(a, 2, \ldots, 2, 1, \ldots, 1)$. Then from the relation

$$n-p-1$$

$$a + 2(n - p - 1) + p = 2(n - 1),$$

we deduce that a = p, which implies that $T \in \mathcal{D}$, a contradiction. Hence j > 1. Now by Theorem 2.2, after we apply operation II to the tree T we obtain a tree $V_1 \in \mathcal{T}_n^p$ such that $H_f(V_1) > H_f(T)$. Again $\Delta(V_1) \ge 3$. Then as before, either $V_1 \in \mathcal{D}$ or there exists $V_2 \in \mathcal{T}_n^p$ such that $H_f(V_2) > H_f(V_1)$. Continuing this process, after a finite number of steps we arrive at a tree $V_s \in \mathcal{D}$ such that

$$H_f(D) = H_f(V_s) > \cdots > H_f(V_1) > H_f(V_0) = H_f(T).$$

Example 5.3. In Table 3 we illustrate the sequences of trees given in Theorems 5.1 and 5.2. Note that in each step we 'move' the maximal subtree at u which contains the vertex a, to the vertex v.

Next we provide a constructive solution to the problem of finding extremal trees in $T \in \mathcal{T}_n^p$ with respect to ${}^0\mathcal{R}_{\alpha}$. This problem was originally solved by Khalid and Ali in [12].

Corollary 5.4. Let $T \in \mathcal{T}_n^p$ with $4 \le p \le n-2$.

- 1. If $T \notin C$, then there exists $C \in C$ such that $T \succ C$ in \mathcal{T}_n^p if $\alpha \in (-\infty, 0) \cup (1, +\infty)$ and, $C \succ T$ in \mathcal{T}_n^p if $\alpha \in (0, 1)$.
- 2. If $T \notin \mathcal{D}$, then there exists $D \in \mathcal{D}$ such that $D \succ T$ in \mathcal{T}_n^p if $\alpha \in (-\infty, 0) \cup (1, +\infty)$ and, $T \succ D$ in \mathcal{T}_n^p if $\alpha \in (0, 1)$.

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding the publication of this article.

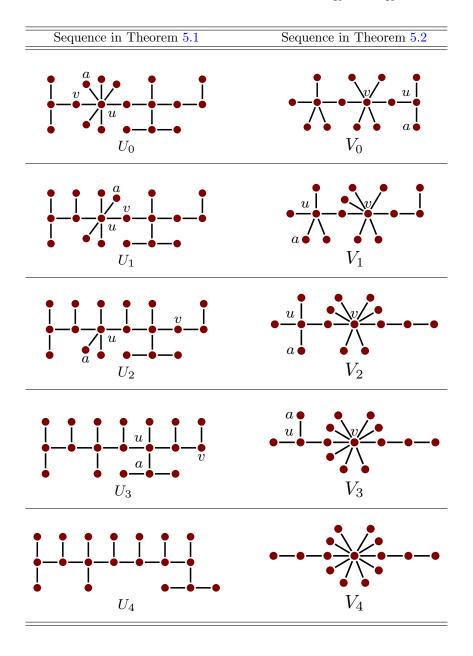


Table 3: Decreasing and increasing sequences of trees in \mathcal{T}_{19}^{11} and \mathcal{T}_{15}^{10} , respectively.

References

- Y. Yao, M. Liu, F. Belardo and C. Yang, Unified extremal results of topological indices and spectral invariants of graphs, *Discrete Appl. Math.* 271 (2019) 218–232, https://doi.org/10.1016/j.dam.2019.06.005.
- [2] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total πelectron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538, https://doi.org/10.1016/0009-2614(72)85099-1.
- [3] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184–1190, https://doi.org/10.1007/s10910-015-0480-z.
- [4] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208.
- [5] X. Li and Y. Shi, (n, m)-graphs with maximum zeroth-order general Randić index for $\alpha \in (-1, 0)$, MATCH Commun. Math. Comput. Chem. 62 (2009) 163–170.
- [6] S. Bermudo, R. Cruz and J. Rada, Vertex-degree function index on tournaments, Commun. Comb. Optim. 10 (2025) 443–452.
- [7] I. Tomescu, Properties of connected (n, m)-graphs extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021) 285–294.
- [8] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022) 109–114, https://doi.org/10.46793/match.87-1.109T.
- [9] I. Tomescu, Extremal vertex-degree function index for trees and unicyclic graphs with given independence number, *Discrete Appl. Math.* **306** (2022) 83–88, https://doi.org/10.1016/j.dam.2021.09.028.
- [10] D. He, Z. Ji, C. Yang and K. C. Das, Extremal graphs to vertex degree function index for convex functions, Axioms 12 (2023) #31, https://doi.org/10.3390/axioms12010031.
- [11] X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57–62.
- [12] S. Khalid and A. Ali, On the zeroth-order general Randic index, variable sum exdeg index and trees having vertices with prescribed degree, *Discrete Math. Algorithms Appl.* 10 (2018) #1850015, https://doi.org/10.1142/S1793830918500155.