Metric Dimension for Line Graph of Some Chemical Structures

Document Type : Research Paper

Authors

1 Department of Mathematics‎, ‎Hindustan Institute of Technology and Science‎, ‎Chennai 603 103‎, ‎India

2 Department of Mathematics‎, ‎Saveetha School of Engineering‎, ‎SIMATS‎, ‎Chennai‎, ‎602 105‎, ‎India

3 Department of Mathematics‎, ‎Faculty of Arts and Science‎, ‎Bursa Uludag University‎, ‎Gorukle 16059‎, ‎Turkey

Abstract

The metric dimension of a graph is a fundamental parameter that measures the minimum number of vertices to identify all other vertices in the graph uniquely‎. ‎In the context of chemical structures‎, ‎where graphs represent molecular entities‎, ‎the metric dimension becomes a crucial metric for understanding molecular behavior and interactions‎. ‎A subset $T = \{ t_1,t_2,\ldots‎, ‎t_k \}$ of nodes of a connected network $G$ is referred to as a revolving set‎, ‎if for any pair of nodes‎, ‎$ l,m \in V(G)$ there exists a node $t \in T$‎, ‎such that its distances from $l$ and $m$ are different‎. ‎The smallest {cardinality} of $T$ is referred to as the metric dimension of $G$‎, ‎and the nodes in $T$ constitute a metric basis of $G$‎. ‎In this work‎, ‎we calculate the line graph's metric dimension for some chemical structures such as hexagon-square chains‎, ‎linear phenylene structures‎, ‎and linear heptagonal structures‎.

Keywords

Main Subjects


[1] P. J. Slater, Leaves of trees, in: Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Congr. Numer. 14 (1975) 549–559.
[2] G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99–113, https://doi.org/10.1016/S0166-218X(00)00198-0.
[3] G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of graphs, Comput. Math. Appl. 39 (2000) 19–28, https://doi.org/10.1016/S0898-1221(00)00126-7.
[4] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat. 3 (1993) 203–236, https://doi.org/10.1080/10543409308835060.
[5] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217–229, https://doi.org/10.1016/0166-218X(95)00106-2.
[6] S. Söderberg and H. S. Shapiro, A combinatory detection problem, Amer. Math. Monthly 70 (1963) 1066–1070, https://doi.org/10.1080/00029890.1963.11992174.
[7] P. Manuel, B. Rajan, I. Rajasingh and C. Monica M, On minimum metric dimension of honeycomb networks, J. Discrete Algorithms 6 (2008) 20–27, https://doi.org/10.1016/j.jda.2006.09.002.
[8] A. Sebo and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004) 383–393.
[9] H. M. A. Siddiqui and M. Imran, Computing metric and partition dimension 2- dimensional lattices of certain nanotubes, J. Comput. Theor. Nanosci. 11 (2014) 2419–2423, https://doi.org/10.1166/jctn.2014.3656.
[10] S. Akhter and R. Farooq, Metric dimension of fullerence graphs, Electron. J. Graph Theory Appl. 7 (2019) 91–103, https://doi.org/10.5614/ejgta.2019.7.1.7.
[11] M. Feng, M. Xu and K. Wang, On the metric dimension of line graphs, Discrete Appl. Math. 161 (2013) 802–805, https://doi.org/10.1016/j.dam.2012.10.018.
[12] J. A. Cynthia and M. Ramya, The local metric dimension of a cyclic split graph, Ann. Pure Appl. Math. 8 (2014) 201–205.
[13] H. Fernau, P. Heggernes, P. van’t Hof and D. M. R. Saei, Computing the metric dimension for chain graphs, Inform. Process. Lett. 115 (2015) 671–676, https://doi.org/10.1016/j.ipl.2015.04.006.
[14] A. N. A. Koam, A. Ahmad, M. E. Abdelhag and M. Azeem, Metric and fault tolerant metric dimension of hollow coronoid, IEEE Access 9 (2021) 81527–81534, https://doi.org/10.1109/ACCESS.2021.3085584.
[15] H. Alshehri, A. Ahmad, Y. Alqahtani and M. Azeem, Vertex metric-based dimension of generalized perimantanes diamondoid structure, IEEE Access 10 (2022) 43320–43326, https://doi.org/10.1109/ACCESS.2022.3169277.
[16] M. F. Nadeem, A. Shabbir and M. Azeem, On metric dimension and fault tolerant metric dimension of some chemical structures, Polycycl. Aromat. Compd. 42 (2022) 6975–6987, https://doi.org/10.1080/10406638.2021.1994429.
[17] J. Xu, Topological Structure and Analysis of Interconnection Networks, Network Theory and Applications, Springer-Verlag US, 2001.
[18] H. Yousefi-Azari, J. Yazdani, A. Bahrami and A. R. Ashrafi, Computing PI and Szeged indices of multiple phentlenes and cyclic hexagonal square chain consisting of mutually isomorphic hexagonal chains, J. Serb. Chem. Soc. 72 (2007) 1063–1067, https://doi.org/10.2298/JSC0711063Y.
[19] O. Bodroža-Pantic and R. Doroslovacki, The Gutman formulas for algebric structure count, J. Math. Chem. 35 (2004) 139–146, https://doi.org/10.1023/B:JOMC.0000014310.56075.45.
[20] D. Babic, A. Graovac and I. Gutman, Algebraic structure count of cyclobutadienyl bridged polyacenes, Polycycl. Aromat. Compd. 4 (1995) 199–207, https://doi.org/10.1080/10406639508009618.
[21] J. B. Liu, J. Zhao, Z. Zhu and J. Cao, On the normalized Laplacian and the number of spanning trees of linear heptagonal networks, Mathematics 7 (2019) #314, https://doi.org/10.3390/math7040314.