[1] P. J. Slater, Leaves of trees, in: Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Congr. Numer. 14 (1975) 549–559.
[2] G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99–113, https://doi.org/10.1016/S0166-218X(00)00198-0.
[3] G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of graphs, Comput. Math. Appl. 39 (2000) 19–28, https://doi.org/10.1016/S0898-1221(00)00126-7.
[4] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat. 3 (1993) 203–236, https://doi.org/10.1080/10543409308835060.
[5] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217–229, https://doi.org/10.1016/0166-218X(95)00106-2.
[6] S. Söderberg and H. S. Shapiro, A combinatory detection problem, Amer. Math. Monthly 70 (1963) 1066–1070, https://doi.org/10.1080/00029890.1963.11992174.
[7] P. Manuel, B. Rajan, I. Rajasingh and C. Monica M, On minimum metric dimension of honeycomb networks, J. Discrete Algorithms 6 (2008) 20–27, https://doi.org/10.1016/j.jda.2006.09.002.
[8] A. Sebo and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004) 383–393.
[9] H. M. A. Siddiqui and M. Imran, Computing metric and partition dimension 2- dimensional lattices of certain nanotubes, J. Comput. Theor. Nanosci. 11 (2014) 2419–2423,
https://doi.org/10.1166/jctn.2014.3656.
[10] S. Akhter and R. Farooq, Metric dimension of fullerence graphs, Electron. J. Graph Theory Appl. 7 (2019) 91–103, https://doi.org/10.5614/ejgta.2019.7.1.7.
[11] M. Feng, M. Xu and K. Wang, On the metric dimension of line graphs, Discrete Appl. Math. 161 (2013) 802–805, https://doi.org/10.1016/j.dam.2012.10.018.
[12] J. A. Cynthia and M. Ramya, The local metric dimension of a cyclic split graph, Ann. Pure Appl. Math. 8 (2014) 201–205.
[13] H. Fernau, P. Heggernes, P. van’t Hof and D. M. R. Saei, Computing the metric dimension for chain graphs, Inform. Process. Lett. 115 (2015) 671–676, https://doi.org/10.1016/j.ipl.2015.04.006.
[14] A. N. A. Koam, A. Ahmad, M. E. Abdelhag and M. Azeem, Metric and fault tolerant metric dimension of hollow coronoid, IEEE Access 9 (2021) 81527–81534, https://doi.org/10.1109/ACCESS.2021.3085584.
[15] H. Alshehri, A. Ahmad, Y. Alqahtani and M. Azeem, Vertex metric-based dimension of generalized perimantanes diamondoid structure, IEEE Access 10 (2022) 43320–43326, https://doi.org/10.1109/ACCESS.2022.3169277.
[16] M. F. Nadeem, A. Shabbir and M. Azeem, On metric dimension and fault tolerant metric dimension of some chemical structures, Polycycl. Aromat. Compd. 42 (2022) 6975–6987, https://doi.org/10.1080/10406638.2021.1994429.
[17] J. Xu, Topological Structure and Analysis of Interconnection Networks, Network Theory and Applications, Springer-Verlag US, 2001.
[18] H. Yousefi-Azari, J. Yazdani, A. Bahrami and A. R. Ashrafi, Computing PI and Szeged indices of multiple phentlenes and cyclic hexagonal square chain consisting of mutually isomorphic hexagonal chains, J. Serb. Chem. Soc. 72 (2007) 1063–1067, https://doi.org/10.2298/JSC0711063Y.
[19] O. Bodroža-Pantic and R. Doroslovacki, The Gutman formulas for algebric structure count, J. Math. Chem. 35 (2004) 139–146, https://doi.org/10.1023/B:JOMC.0000014310.56075.45.
[20] D. Babic, A. Graovac and I. Gutman, Algebraic structure count of cyclobutadienyl bridged polyacenes, Polycycl. Aromat. Compd. 4 (1995) 199–207, https://doi.org/10.1080/10406639508009618.
[21] J. B. Liu, J. Zhao, Z. Zhu and J. Cao, On the normalized Laplacian and the number of spanning trees of linear heptagonal networks, Mathematics 7 (2019) #314, https://doi.org/10.3390/math7040314.