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Abstract

The metric dimension of a graph is a fundamental parameter
that measures the minimum number of vertices to identify all
other vertices in the graph uniquely. In the context of chemical
structures, where graphs represent molecular entities, the metric
dimension becomes a crucial metric for understanding molecu-
lar behavior and interactions. A subset T = {t1, t2, . . . , tk} of
nodes of a connected network G is referred to as a revolving set,
if for any pair of nodes, l,m ∈ V (G) there exists a node t ∈ T ,
such that its distances from l and m are different. The smallest
cardinality of T is referred to as the metric dimension of G, and
the nodes in T constitute a metric basis of G. In this work,
we calculate the line graph’s metric dimension for some chem-
ical structures such as hexagon-square chains, linear phenylene
structures, and linear heptagonal structures.

c© 2024 University of Kashan Press. All rights reserved

1 Introduction
In chemical graph theory, a collection of chemical compounds is mathematically defined in a
way that provides different representations of various molecules. The idea of labeling graphs is
used to represent the structure of a chemical compound whose node and line labels specify the
atom and the bond respectively. Recent advances in mathematical chemistry provide a wide
range of methods for tackling problems like understanding the underlying chemical structures
of known chemical concepts, constructing and investigating new mathematical representations
of chemical events, as well as applying mathematical techniques relevant to chemistry. Chemi-
cal graph theory, which is used to describe the structural characteristics of crystals, polymers,
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molecules, processes, clusters, and other entities, is a crucial field in mathematical chemistry.
Further, mathematical chemistry recently presents a wide range of ways to deal with under-
standing the chemical structures that underlie existing chemical ideas, creating and researching
novel mathematical models of chemical phenomena, and utilizing mathematical concepts and
procedures in chemistry. In the pharmaceutical industry, finding new chemical structures for
treating different diseases is affecting bigger development groups that comprise more broad
and various synthetic endeavors targeted at increasingly complex activity spectra. These mod-
ifications are now being powered by fast technological advances in high-throughput screening
combinatorial chemistry. The concept of metric dimension allows us to obtain a unique repre-
sentation of chemical structures. In particular, they were used in pharmaceutical research to
discover patterns common to a variety of drugs [1].

In chemistry, customary depictions of the structure of chemical compounds are graphs where
the vertices and edges represent the atoms and bond types, respectively. The concept of metric
dimension performs a significant role in the discovery of drugs, it is used to determine whether
the features of a compound are responsible for its pharmacological activity, this idea is used
in chemical compounds having similar structures (graph). Under the traditional view, we
can determine whether any two compounds in the collection share the same functional group
at a particular position. This comparative statement plays a critical role in drug discovery
for determining whether the characteristics of a compound contribute to its pharmacological
activity [2, 3].

The idea of metric dimension was first put forth by Slater in 1975 about difficulties with
location[1] and it plays an important role in the development of medications since it may be used
to assess whether a compound’s characteristics cause its pharmacological activity. This notion
is applied to chemical compounds with comparable structures [2, 3]. For efficient construction
of massive data sets of a chemical structure [4], the notion of metric dimension is used. Metric
dimensions are used in robot navigation [5], coin-weighing problems [6], computer networks [7],
chemistry [2], combinatorial optimization [8], locating image processing facilities issues, sonar,
and coastguard LORAN stations [1]. For different chemical structures represented by resolving
parameters, we refer to [9].

In 2008, Indra et al. [7] determined that the metric dimension of honeycomb networks is
3. Shehnaz and Rashid [10] studied the metric dimension of the fullerene network. Min et
al. [11] found the metric dimension of the line network L(G) of G. Cyclic split networks’
local metric dimension was derived by Cynthia and Ramya [12]. Henning et al. [13] studied
computing the metric dimension for chain graphs. Ali et al. [14] examined the hollow coronoid’s
metric and fault-tolerant metric dimensions. Hamdon et al. [15] computed the generalized
perimantanes diamondoid structure’s vertex metric-based dimension. In 2021, Muhammad et
al. [16] discovered the fault-tolerant metric dimension and metric dimension for various chemical
structures.

We establish the metric dimensions for line graphs of specific chemical structures in this
paper. Following is the arrangement of the remaining sections of the paper. Preliminaries and
basic concepts are given in Section 2 and the main findings are detailed in Sections 3, 4, and
5. The implementation and applications of metric dimension in various fields and concluding
remarks are in Sections 6 and 7 respectively.

2 Basis concepts

In this paper, connected, undirected, and finite graphs have been taken into consideration.
They are also addressed as networks. A network is denoted also as G = (V,E) where V is the
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set of nodes or vertices and E is the set of edges or lines in G. The distance d(a, b) between
any two nodes is the shortest (a, b)-path and is equal to the path’s total number of edges. Let
the collection of nodes at distance j from node x be denoted by Nj(x).

Definition 2.1. A finite subset T ⊆ V (G) of nodes is a locating or resolving set of G if, for
every set of two vertices l,m in G, there exists a vertex t ∈ T such that d(l, t) 6= d(m, t). In other
words, we say that r(l|T ) 6= r(m|T ), where r(x|T ) is the identification of a node g ∈ V (G) with
respect to T , defined as r(x|T ) = (d(g, t1), d(g, t2), . . . , d(g, tk)), where T = {t1, t2, . . . , tk} ⊆ V .
A basis of G is the smallest resolving (locating) set, and its cardinality is denoted as dim(G)
and is referred to as the metric dimension of G.

Consider the graph G in Figure 1, for illustration. The set W1 = {a1, a2} is not a resolv-
ing set for G, since r(a7|W1) = r(a8|W1) = r(a9|W1) = (4, 3). Instead, W2 = {a1, a2, a7} is a

G :

Figure 1

locating set for G. The identification of vertices with respect to W2 are r(a1|W2) = (0, 1, 4),
r(a2|W2) = (1, 0, 3), r(a3|W2) = (2, 1, 2), r(a4|W2) = (2, 1, 4), r(a5|W2) = (3, 2, 1), r(a6|W2) =
(3, 2, 3), r(a7|W2) = (4, 3, 0), r(a8|W2) = (4, 3, 2) and r(a9|W2) = (4, 3, 4). W2 is not a smaller
locating set, since W3 = {a1, a7} is also a resolving set. Since G cannot have a single vertex in
its resolving, consequently W3 is a minimum resolving set.

Definition 2.2. ([17]). Consider that G = (V,E) is a connected, simple, and finite network.
The line network of G, denoted by L(G) is an undirected network in which V (L(G)) = E, and
two distinct nodes are connected by an edge in L(G) if and only if they are incident at the same
vertex in G.

For illustration, a network G and its corresponding line network are shown in Figure 2.

Figure 2: A network G and its line network L(G).
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The metric dimension for the line graph of a few chemical structures is determined in this
section. We need the following results for our subsequent work.

Theorem 2.3. ([5]). Assume that the network G = (V,E) has metric dimension 2 and let
{x, y} ⊆ V be a metric basis of G. Then, the following claims are valid.

i) Between x and y, there is only one shortest path P .

ii) The maximum degree of each x and y is 3.

iii) Each of the internal nodes of P has a maximum degree of 5.

Theorem 2.4. ([3]). Suppose that G is a network of order n ≥ 2. Then

i) The metric dimension of graph G equals 1 if and only if G is a path network with n
vertices.

ii) The metric dimension of graph G is n− 1 if and only if G is isomorphic to the complete
graph Kn.

3 Main results

In chemical graph theory, the concept of metric dimension has found applications in understand-
ing molecular structures, analyzing molecular graphs, chemical reactivity, bonding patterns,
drug design, developing quantitative structure-activity relationships (QSAR), and so on. In
this section, we obtain the metric dimension of the line graph of certain chemical architectures,
such as cyclic hexagonal square chains, liner phenylene, and linear heptagonal structures.

3.1 Metric dimension of the line graph of cyclic hexagonal-square
chain

A cyclic hexagonal-square chain [18] denoted by Cm,n is a graph of molecules made up of m
hexagonal chains that are mutually isomorphic H1, H2, . . . , Hm, cyclically concatenated by
circuits αi of length 4, 1 ≤ i ≤ m in which HiS are chains containing m hexagons. In this
paper, we consider C1,n where m = 1. For brevity, the graph C1,n is denoted by C(n). For
illustration, the cyclic hexagonal-square chain and it’s corresponding line graph of dimension 5
are given in Figure 3.

We partition the vertices of L(V (G)) as I, O, and M , where I, O, and M are the set of all
vertices in the inner cycle, outer cycle, and the middle vertices that are not on the inner and
outer cycles respectively. The graph L(C(n)) is rotationally symmetric and has 8n vertices,
in which 3n vertices are in each of the inner and outer cycles labeled as O1, O2, . . . , O3n and
I1, I2, . . . , I3n in the clockwise direction respectively, and the remaining 2n middle vertices are
labeled as M1,M2, . . . ,M2n in the clockwise direction as shown in Figure 4. The diameter of
L(C(n)) is 3n+1

2 when n is odd and 3n+2
2 when n is even n ≥ 2. Chemical and structural

characteristics L(C(n)) are found in [18–20].
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Figure 3: (a) Cyclic hexagonal-square chain of dimension 5, (b) Line graph of cyclic hexagonal-
square chain of dimension 5.

Theorem 3.1. Let G be a cyclic hexagonal-square chain C(n). Then dim(L(G)) ≥ 3, for
n ≥ 2.

Proof. Suppose L(G) has a metric basis equal to 2. Let W = {x, y} be a metric basis of L(G).
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Figure 4: The labeling of the line network of a cyclic hexagonal-square chain of dimension n.

Case 1 (n is odd): The following subcases are now available.
Case 1(a): Both x and y are in I.
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For 2 ≤ j ≤ 3n−1
2 , ifW = {O1, Oj} is a locating set, then r(O3n−1|W ) = r(M2n|W ) = (2, j+1).

For j = 3n−1
2 +1, if W = {O1, Oj} is a locating set, then r(O3n−1|W ) = r(M2|W ) = (2, j − 2).

For j = 3n−1
2 + 2, if W = {O1, Oj} is a locating set, then r(I3n|W ) = r(M2|W ) = (2, j − 2).

For j = 3n−1
2 + 3, if W = {O1, Oj} is a locating set, then r(I1|W ) = r(O3|W ) = (2, j − 3).

For 3n−1
2 + 4 ≤ j ≤ 3n, if W = {O1, Oj} is a locating set, then r(O3|W ) = r(M2|W ) =

(2, 3n− j + 3). Thus, the set W chosen is not a metric basis for any of the above cases.
Since the graph is rotationally symmetric, considering any two vertices in O is the same as

that of I.
Case 1(b): Suppose x ∈ I and y ∈ O. The resolving set between the outer and inner cycle is
as follows.
If W = {O1, I1} is a resolving set, then r(M2n|W ) = r(M2|W ) = (2, 2).
For 2 ≤ j ≤ 3n−1

2 +1, j ≡ 1, 2 (mod 3) if W = {O1, Ij} is a resolving set, then r(I 3n−1
2 +2|W ) =

r(Mn+1|W ) = (3n+1
2 , 3n+3−2j

2 ).
For 3n−1

2 + 3 ≤ j ≤ 3n − 1, j ≡ 1, 2 (mod 3) if W = {O1, Ij} is a resolving set, then
r(I 3n−1

2 +2|W ) = r(Mn+1|W ) = (3n+1
2 , 2j−3n−1

2 ).
The case when x ∈ I and y ∈ O can be dealt with similarly.

The cases when (i) x, y ∈ M, (ii) x ∈ I, y ∈ M, and (iii) x ∈ M , y ∈ I, (iv) x ∈ M , y ∈ O,
and x ∈ O, y ∈M are all ruled out by Theorem 2.3 as at least one of them would have degree
4.
Case 2 (n is even): Now we have the following subcases.
Case 2(a): Suppose both x and y are in O.
For 1 ≤ j ≤ 3n

2 . if W = {O1, Oj} is a locating set of L(G), then r(O3n−1|W ) = r(M2n|W ) =
(2, j + 1).
For 3n

2 + 3 ≤ j ≤ 3n let W = {O1, Oj} be a locating set, then r(O3|W ) = r(M2|W ) =
(2, 3n− j + 3).
For j = 3n

2 + 1, let W = {O1, Oj} is a locating set, then r(M2n|W ) = r(M2|W ) = (2, j − 2) =
(2, 5).
For j = 3n

2 + 2, let W = {O1, Oj} is a locating set, then r(I3n|W ) = r(O3|W ) = (2, j − 3).
Thus, the set W chosen is not a metric basis for any of the above cases.
Since the graph is rotationally symmetric, considering any two vertices in O is the same as that
of I.
Case 2(b): Suppose x ∈ I and y ∈ O are in L(G). The resolving set between the outer and
inner cycle is as follows.
For j = 1, if W = {O1, Ij} is a locating set then r(M2n|W ) = r(M2|W ) = (2, 2).
For j = 2, if W = {O1, Ij} is a locating set then r(I3n−1|W ) = r(O4|W ) = (3, 3).
For 3 ≤ j ≤ 3n

2 + 2, if W = {O1, Ij} is a locating set then r(I 3n
2 +2|W ) = r(Mn+2|W ).

For 3n
2 + 3 ≤ j ≤ 3n, if W = {O1, Ij} is a locating set then, r(M 3n

2 +2|W ) = r(Mn+1|W ).
Let W = {O2, Ij} is mirror image of {O1, Ij} and rotationally symmetric.
The cases when x ∈ I and y ∈ O can be dealt with similarly.
The cases when (i) x, y ∈M, (ii) x ∈ I, y ∈M, and (iii) x ∈M , y ∈ I, (iv) x ∈M , y ∈ O, and
x ∈ O, y ∈M are all ruled out by Theorem 2.3 as at least one of them would have degree 4.
Hence, in both cases, we conclude that dim(L(G)) ≥ 3. �

Theorem 3.2. Let G be a cyclic hexagonal-square chain C(n). Then dim(L(G)) = 3, n ≥ 2.

Proof. By Theorem 3.1, we have dim(L(G)) ≥ 3. We will prove the equality with the subsequent
two cases.
Case 1 (n is odd): We claim thatW = {O1, O 3n−1

2
, O3n−1} is a resolving set of L(Cm,n). It is

enough to prove that, Nj(O1)∩Nj(O 3n−1
2

)∩Nj(O3n−1) = 0 or 1, where j ∈ {1, 2, 3, . . . , 3n+1
2 }.



Iranian Journal of Mathematical Chemistry 15 (4) (2024) 269− 282 275

For any j, 1 ≤ j ≤ 3n−1
2 the jth neighbourhood of O1 is given by Nj(O1) = {Oj ,M j , Ij}, where

Oj =

{
{O3n, O2}, if j = 1,

{Oj+1, O3n+1−j}, if 2 ≤ j ≤ 3n−1
2 ,

M j =



M 2j
3 +1, if j ≡ 0 (mod 3), j < 3n+1

2 ,

Mj , if j = 1,
M 6n−2j+5

3
, if j ≡ 1(mod 3), j 6= 1, and j < 3n+1

2 ,

{M2n−2( j+1
2 +2),m2 j+1

3
}, if j ≡ 2 (mod 3) and j < 3n+1

2 ,

Mn+1, if j = 3n+1
2 ,

Ij =

 {I3n, Ij−1}, if j = 2,
{I3n−j , Ij−1, Ij+1}, if j = 3,

I3n−j+2, if 4 ≤ j ≤ 3n+1
2 .

For any j, 1 ≤ j ≤ 3n−1
2 the jth neighbourhood of O 3n−1

2
is given by Nj(O 3n−1

2
) = {Oj ,M j , Ij},

where

Oj =

{
{O 3n−1+2j

2
, O 3n−2j−1

2
}, if 1 ≤ j ≤ 3n−3

2 ,

{O3n−1, O3n}, if j = 3n−1
2 ,

M j =



M 2j
3 +n, if j ≡ 0 (mod 3), j < 3n+1

2 ,

Mn, if j = 1,
M 3n−2j+2

3
, if j ≡ 1 (mod 3), j 6= 1 and j < 3n+1

2 ,

{M 3n+2j−1
3

,M 3n−2j+1
3
}, if j ≡ 2 (mod 3), j < 3n+1

2 ,

M2n, if j = 3n+1
2 ,

Ij =


{I 3n−1

2
, I 3n−3

2
}, if j = 2,

{I 3n+3
2
, I 3n+1

2
, I3n−5}, if j = 3,

{I 3n+2j−3
2

, I 3n−2j+1
2
}, if 4 ≤ j ≤ 3n−1

2 ,

{I3n, I3n−1}, if j = 3n+1
2 .

For any j, 1 ≤ j ≤ 3n−1
2 , the jth neighbourhood Nj(O3n) is given by Nj(O3n) = {Oj ,M j , Ij},

where
Oj =

{
{O3n, O3n−2}, if j = 1,
{Oj−1, O3n−j−1}, if 2 ≤ j ≤ 3n−1

2 ,

M j =



M 6n−2j
3

, if j ≡ 0 (mod 3), j < 3n+1
2 ,

M2n, if j = 1,
M 2j−2

3
, if j ≡ 1 (mod 3), j 6= 1 and j < 3n+1

2 ,

{M 2j−1
3
,m 6n−2j+1

3
}, if j ≡ 2 (mod 3), j < 3n+1

2 ,

Mj , if j = 3n+1
2 ,

Ij =

 {I3n, I3n−1}, if j = 2,
{Ij−2, I3n−3, I3n−2}, if j = 3,
{Ij−2, I3n−j}, if 4 ≤ j ≤ 3n+1

2 .

Case 2 (n is even):
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Let W = {O1, O2, O 3n+2
2
} be a locating set of L(Cm,n). To prove W is a locating set it is

enough to prove Nj(O1) ∩Nj(O2) ∩Nj(O 3n+2
2

) = 0 or 1, where j ∈ {1, 2, 3, . . . , 3n+2
2 }.

For any j, 1 ≤ j ≤ 3n
2 +1 the jth neighbourhood of O1 is given by Nj(O1) = {Oj ,M j , Ij}, where

Oj =

{
{O3n+1−j , Oj+1}, if 1 ≤ j ≤ 3n

2 ,
Oj+1, if j = 3n

2 + 1,

M j =



Mj , if j = 1,
{M 6n−2j+4

3
,M 2y+2

3
}, if j ≡ 2 (mod 3), j < 3n

2 ,

M 2j+3
3
, if j ≡ 3 (mod 3), j < 3n

2 ,

M 6n−2j+5
3

, if j ≡ 1 (mod 3), j < 3n
2 ,

{M2n−2( j+1
2 +2),M2( j+1

3 )}, if j ≡ 2 (mod 3), j ≤ 3n+1
2 ,

Mn+1, if j = 3n
2 ,

Ij =


{I3n, Ij−1}, if j = 2,

{I3n−1, Ij−1, Ij}, if j = 3,
{I3n−j+2, Ij}, if 4 ≤ j ≤ 3n

2 ,
Ij , if j = 3n

2 + 1.

For any j, 1 ≤ j ≤ 3n
2 + 1 the jth neighbourhood of O2 is given by Nj(O2) = {Oj ,M j , Ij},

where

Oj =

 {Oj , Oj+2}, if j = 1,
{O3n+2−j , Oj+2}, if 2 ≤ j ≤ 3n

2 − 1,
Oj+2, if j = 3n

2 ,

M j =



Mj+1, if j = 1,
{Mj−1,Mj+1}, if j = 2,

{M 2j+5
3
,M 6n−2j+1

3 +2}, if j ≡ 2 (mod 3), j < 3n
2 ,

M 6n−2j+6
3

, if j ≡ 3 (mod 3), j < 3n
2 ,

M 2j+4
3
, if j ≡ 1 (mod 3), j < 3n

2 ,

Mn+2, if j = 3n
2 ;

Ij =


{Ij , Ij+3}, if j = 2,

{I3n, Ij−2, Ij+1}, if j = 3,
{I3n+3−j , Ij+1}, if 4 ≤ j ≤ 3n

2 ,
Ij+1, if j = 3n

2 + 1.

For any j, 1 ≤ j ≤ 3n
2 + 1, the jth neighbourhood of O 3n+2

2
is given by Nj(O 3n+2

2
) =

{Oj ,M j , Ij}, where

Oj =

{
{O 3n+2j+2

2
, O 3n+2−2j

2
}, if 1 ≤ j ≤ 3n

2 − 1,

O1, if j = 3n
2 ,
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M j =



Mn+1, if j = 1,
{M 3n−2j+4

3
,M 3n+2j+2

3
}, if j ≡ 2 (mod 3), j < 3n

2 ,

M 3n+2j+3
3

, if j ≡ 3 (mod 3), j < 3n
2 ,

M 3n−2j+5
3

, if j ≡ 1 (mod 3), j < 3n
2 ,

M1, if j = 3n
2 ,

Ij =


{I 3n+2

2
, I 3n

2
}, if j = 2,

{I 3n+6
2
, I 3n+4

2
, I 3n−2

2
}, if j = 3,

{I 3n+2j
2

, I 3n−2j+2
2
}, if 4 ≤ j ≤ 3n

2 ,

I1, if j = 3n
2 + 1.

Thus, by the above discussion, it is clear that for n is odd Nj(O1)∩Nj(O 3n−1
2

)∩Nj(O3n−1) =

0 or 1, and for n is even Nj(O1) ∩Nj(O2) ∩Nj(O 3n+2
2

) = 0 or 1. Hence the metric dimension
of L(G) is 3. �

4 Metric dimension for line graph of phenylene structure
The linear phenylene structure of dimension n, denoted by PSn, consists of n alternating
rhombuses and hexagonal rings that are connected to one another by bicyclo propene units, see
Figure 5. The labeling of the line graph of the linear phenylene structure is given in Figure 6.
It has 3 levels, top, middle, and bottom. Label the vertices in the top, middle, and bottom as
a1, a2, . . . , a3n−1; b1, b2, . . . , b2n; and c1, c2, . . . , c3n−1 from left to right respectively.

Figure 5: Linear phenylene structure of dimension n.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a3n-2 a3n-1

b1 b2 b3 b4 b5 b6 b7 b8 b9 b3n-2
b3n-1

m1 m2 m3 m4 m5 m6 m2n-1 m2n

Figure 6: Labelling of the line graph of linear phenylene structure of dimension n.

This section establishes the metric dimension of the line graph for linear phenylene structure
of dimension n, n ≥ 2.

Theorem 4.1. Let G be a linear phenylene structure of dimension n, n ≥ 2 then dim(L(G)) =
2.
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Proof. Since L(G) is not a path, dim(L(G)) ≥ 2. Let W = {a1, a3n−1} be a locating set of G.
Then the identification of the vertices aj , mj , and bj with respect to W are given by

r(aj |W ) =
{

(j − 1, 3n− j − 1) for all j, 1 ≤ j ≤ 3n− 1,

r(mj |W ) =



(j, 3n− 1), if j = 1 ,
(j, 3n− 3), if j = 2 ,
(j, 3n− 4), if j = 3 ,

( 3j−2
2 , 6n−3j

2 ), if 4 ≤ j ≤ 2n− 4 and j is even,

( 3j−3
2 , 6n−3j+1

2 ), if 5 ≤ j ≤ 2n− 3 and j is odd,
(3n− 4, 3), if j = 2n− 2 ,
(3n− 3, 2), if j = 2n− 1 ,
(3n− 1, 1), if j = 2n,

and

r(bj |W ) =


(2, 3n− 1), if j = 1 ,
(3, 3n− 2), if j = 2 ,
(j, 3n− j), if 3 ≤ j ≤ 3n− 3 ,
(3n− 2, 3), if j = 3n− 2 ,
(3n− 1, 2), if j = 3n− 1.

It is clear that every vertex of L(G) has a unique representation with regard to W . Hence
dim((L(G)) = 2. �

For illustration, the line graph of the linear phenylene structure of dimension 3 is given in
Figure 7.

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

m1 m2 m3 m4 m5 m6

Figure 7: Labelling of the line graph of the linear phenylene structure of dimension 3.

As per Theorem 4.1, let us consider the resolving setW = {a1, a8}. Now, the representation
of all the points with respect to W is given as follows:
r(a1|W ) = (0, 7), r(a2|W ) = (1, 6), r(a3|W ) = (2, 5), r(a4|W ) = (3, 4), r(a5|W ) = (4, 3),
r(a6|W ) = (5, 2), r(a7|W ) = (6, 1), r(a8|W ) = (7, 0). Similarly, r(m1|W ) = (1, 8), r(m2|W ) =
(2, 6), r(m3|W ) = (3, 5), r(m4|W ) = (5, 3), r(m5|W ) = (6, 2), r(m6|W ) = (8, 1), and r(b1|W ) =
(2, 8), r(b2|W ) = (3, 7), r(b3|W ) = (3, 6), r(b4|W ) = (4, 5), r(b5|W ) = (5, 4), r(b6|W ) = (6, 3),
r(b7|W ) = (7, 3), r(b8|W ) = (8, 2).
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5 Metric dimension for line graph of linear heptagonal struc-
ture

Consider Hn as the linear heptagonal structure depicted in Figure 8, where two heptagons share
two common edges. In other words, these two heptagons can be visualized as incorporating two
P2 (path graphs with two vertices) and attaching them. For heptagon applications resulting
from various attributes, see [21]. The labeling of the line graph of the linear heptagonal struc-
ture is given in Figure 9. It has 5 levels, aj , vj , bj , uj , and mj as a1, a2, a3, . . . , a4n−3, a4n−2;
v1, v2, v3, . . . , v4n−3, v4n−2; b1, b2, b3, . . . , bn; u1, u2, u3, . . . , un; andm1,m2,m3, . . . ,mn from left
to right respectively.

Figure 8: Linear heptagonal structure of dimension n.

Figure 9: Labelling of the line graph of linear heptagonal structure of dimension n.

This section establishes the metric dimension of the line graph for linear heptagonal structure
of dimension n, n > 2.

Theorem 5.1. Let G be a linear heptagonal structure of dimension n, n > 2 then dim(L(G)) =
2.

Proof. Since L(G) is not a path, dim(L(G)) ≥ 2. Let W = {a2, a4n−2} be a locating set of
L(G). Then the identification of the vertices aj , bj , mj , uj and vj with respect to W are given
by:
For 1 ≤ j ≤ 4n− 2, the representation aj of L(G) with respect to W as follows:

r(aj |W ) =

{
(1, 4n− 3), if j = 1 ,

(j − 2, 4n− j − 2), if 2 ≤ j ≤ 4n− 2 .

For 1 ≤ j ≤ n the representation bj of L(G) with respect to W as follows:

r(bj |W ) =

{
(4j − 3, 4n− 4j), if 1 ≤ j ≤ n− 1 ,

(4n− 3, 1), if j = n .
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For 1 ≤ j ≤ n the representation mj of L(G) with respect to W as follows:

r(mj |W ) =

{
(2, 4n− 2), if j = 1 ,

(4j − 5, 4n+ 2− 4j), if 2 ≤ j ≤ n .

For 1 ≤ j ≤ n the representation uj of L(G) with respect to W as follows:

r(uj |W ) =

{
(4j − 2, 4n+ 1− 4j), if 1 ≤ j ≤ n− 1 ,

(4n− 2, 2), if j = n .

For 1 ≤ j ≤ 4n− 2 the representation vj of L(G) with respect to W as follows:

r(vj |W ) =


(3, 4n− 1− j), if 1 ≤ j ≤ 3 ,
(j, 4n− 5), if j = 4 ,

(j − 1, 4n− 1− j), if 5 ≤ j ≤ 4n− 5 ,
(j − 1, 3), if 4n− 4 ≤ j ≤ 4n− 2 .

It is clear that every vertex of L(G) has a unique representation with regard to W . Hence
dim((L(G)) = 2. �

6 Implementation and applications
In graph theory, the idea of metric dimension, particularly concerning the line graphs of cyclic
hexagonal-square chains, linear phenylene structure, and linear heptagonal structures, finds ap-
plication in various real-world scenarios, such as network navigation, communication networks,
social network analysis, chemical and molecular structures, circuit design, and VLSI.

Network navigation: Understanding the metric dimension of these line graphs aids in de-
signing efficient navigation strategies in various network systems. In applications such as GPS
navigation, identifying the minimum set of nodes that uniquely determine the location of an
object is crucial for routing and pathfinding.

Communication networks: In communication protocols and network design, determining
the metric dimension helps optimize the placement of relays or information centers. Knowing
the smallest set of nodes needed to monitor or control a network ensures robust communication
and fault tolerance.

Social network analysis: When applied to social networks or community structures, metric
dimension analysis can help identify influential individuals or key nodes whose removal may
impact information flow or influence within a community.

Chemical and molecular structures: In the study of chemical compounds or molecular
structures, analyzing the metric dimension of line graphs provides insights into the spatial
arrangements and connectivity of atoms. This information is vital in fields like chemistry,
pharmaceuticals, and material science.

Circuit design and VLSI (very large scale integration): In electronic circuit design,
determining the metric dimension of line graphs helps optimize the layout of components,
reducing the number of necessary connections and improving the efficiency of the overall design.

Understanding the metric dimension of line graphs in complex structures like cyclic hexagonal-
square chains, linear phenylene structures, and linear heptagonal structures is not only signifi-
cant within the realm of graph theory but has far-reaching implications in practical, real-world
applications across diverse fields. This understanding helps in optimizing resources, improving
network robustness, and advancing various technological and scientific domains.
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7 Concluding remarks
In this paper, we have determined the metric dimension of the line graph for complex struc-
tures such as the cyclic hexagonal-square chain, the linear phenylene structure, and the Linear
heptagonal structure, which presents a fascinating challenge in graph theory. The investigation
into these structures revealed intricate patterns and relationships between vertices and their
respective distances, shedding light on the fundamental properties of these graphs. The explo-
ration of metric dimension not only enhances our understanding of these specific structures but
also contributes to the broader field of graph theory, offering insights into navigation, network
design, and the analysis of communication protocols in various real-world applications. Further
research in this area promises to unveil deeper insights into the behavior and properties of
complex graphs, paving the way for innovative solutions and advancements in diverse domains.
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