On the Reduced and Increased Sombor Indices of Trees‎ ‎with‎ ‎Given‎ ‎Order and Maximum‎ ‎Degree

Document Type : Research Paper

Authors

1 Department of Mathematics and Computer Science‎, ‎Sirjan University of Technology‎, ‎Sirjan‎, ‎Iran

2 Department of Mathematics‎, ‎Kazerun Branch‎, ‎Islamic Azad University‎, ‎P‎. ‎O‎. ‎Box‎: ‎73135-168‎, Kazerun,‎ ‎Iran

10.22052/ijmc.2024.254548.1845

Abstract

‎The Sombor index is a newly introduced vertex-degree-based graph invariant with the ability to predict the enthalpy‎
‎of vaporization and entropy of octane isomers‎. ‎Recently‎, ‎two new variants of the Sombor index namely the reduced and increased Sombor indices were put forward‎. ‎The reduced and increased Sombor indices are respectively defined for graph $\Gamma$ as‎
$$SO_{red}(\Gamma)=\sum_{\mathcal{FG}\inE(\Gamma)}\sqrt{(d_{\Gamma}(\mathcal{F})-1)^2+(d_{\Gamma}(\mathcal{G})-1)^2},$$
‎ and
$$SO^{\ddagger}(\Gamma)=\sum_{\mathcal{FG}\inE({\Gamma})}\sqrt{(d_{\Gamma}(\mathcal{F})+1)^2+(d_{\Gamma}(\mathcal{G})+1)^2},$$‎
‎ in which $d_{\Gamma}(\mathcal{F})$ is the degree of the vertex $\mathcal{F}$ in $\Gamma$‎.
‎ Our purpose is to establish sharp lower bounds on the reduced and increased Sombor indices of trees in terms of their order and maximum vertex degree‎. Moreover‎, ‎the extremal trees that attain the bounds are characterized‎.

Keywords

Main Subjects


[1] I. I. Gutman, B. Rušcic, N. Trinajstic and C. F. Wilcox, Graph theory and molecular orbitals. XII. acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405, https://doi.org/10.1063/1.430994.
[2] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternate hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538, https://doi.org/10.1016/0009-2614(72)85099-1.
[3] A. Ali, I Gutman, E. Milovanovic and I. Milovanovic, Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018) 5–84.
[4] B. Borovicanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.
[5] I. Gutman, E. Milovanovic and I. Milovanovic, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb. 17 (2020) 74–85, https://doi.org/10.1016/j.akcej.2018.05.002.
[6] A. R. Ashrafi, T. Došlic and A. Hamzeh, The Zagreb coindices of graph operations, Discret. Appl. Math. 158 (2010) 1571–1578, https://doi.org/10.1016/j.dam.2010.05.017.
[7] M. Azari, On the Zagreb and eccentricity coindices of graph products, Iran. J. Math. Sci. Inform. 18 (2023) 165–178, https://doi.org/10.52547/ijmsi.18.1.165.
[8] T. Došlic, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008) 66–80.
[9] I. Gutman, B. Furtula, Ž. Kovijanic Vukicevic and G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5–16.
[10] R. Rasi, S. M. Sheikholeslami and A. Behmaram, An upper bound on the first Zagreb index and coindex in trees, Iranian J. Math. Chem. 8 (2017) 71–82, https://doi.org/10.22052/IJMC.2017.42995.
[11] A. Ilic and B. Zhou, On reformulated Zagreb indices, Discrete Appl. Math. 160 (2012) 204–209, https://doi.org/10.1016/j.dam.2011.09.021.
[12] A. Milicevic, S. Nikolic and N. Trinajstic, On reformulated Zagreb indices, Mol. Divers. 8 (2004) 393–399, https://doi.org/10.1023/B:MODI.0000047504.14261.2a.
[13] M. Azari and A. Iranmanesh, Some inequalities for the multiplicative sum Zagreb index of graph operations, J. Math. Inequal. 9 (2015) 727–738, https://doi.org/10.7153/jmi-09-60.
[14] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Instit. 1 (2011) 13–19.
[15] A. Sattar, M. Javaid and E. Bonyah, Connection-based multiplicative Zagreb indices of dendrimer nanostars, J. Math. 2021 (2021) #2107623, https://doi.org/10.1155/2021/2107623.
[16] K. Xu and H. Hua, A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 241–256.
[17] M. Azari and F. Falahati-Nezhad, Some results on forgotten topological coindex, Iranian J. Math. Chem. 10 (2019) 307–318, https://doi.org/10.22052/IJMC.2019.174722.1432.
[18] N. Dehgardi and J. B. Liu, Lanzhou index of trees with fixed maximum degree, MATCH Commun. Math. Comput. Chem. 86 (2021) 3–10.
[19] D. Vukicevic, Q. Li, J. Sedlar and T. Došlic, Lanzhou index, MATCH Commun. Math. Comput. Chem. 80 (2018) 863–876.
[20] A. Alwardi, A. Alqesmah, R. Rangarajan and I. N. Cangul, Entire Zagreb indices of graphs, Discrete Math. Algorithms Appl. 10 (2018) #1850037,https://doi.org/10.1142/S1793830918500374.
[21] L. Luo, N. Dehgardi and A. Fahad, Lower bounds on the entire Zagreb indices of trees, Discrete Dyn. Nat. Soc. 2020 (2020) #8616725, https://doi.org/10.1155/2020/8616725.
[22] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.
[23] K. C. Das, A. Ghalavand and A. R. Ashrafi, On a conjecture about the Sombor index of graphs, Symmetry 13 (2021) #1830, https://doi.org/10.3390/sym13101830.
[24] I. Milovanovic, E. Milovanovic, A. Ali and M. Matejic, Some results on the Sombor indices of graphs, Contrib. Math. 3 (2021) 59–67, https://doi.org/10.47443/cm.2021.0024.
[25] K. C. Das, A. S. Cevik, I. N. Cangul and Y. Shang, On Sombor index, Symmetry 13 (2021) #140, https://doi.org/10.3390/sym13010140.
[26] K. C. Das and Y. Shang, Some extremal graphs with respect to Sombor index, Mathematics 9 (2021) #1202, https://doi.org/10.3390/math9111202.
[27] Z. Wang, Y. Mao, Y. Li and B. Furtula, On relations between Sombor and other degreebased indices, J. Appl. Math. Comput. 68 (2022) 1–17, https://doi.org/10.1007/s12190-021-01516-x.
[28] T. Réti, T. Došlic and A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021) 11–18, https://doi.org/10.47443/cm.2021.0006.
[29] I. Gutman, N. K. Gürsoy, A. Gürsoy and A. Ülker, New bounds on Sombor index, Commun. Comb. Optim. 8 (2023) 305–311, https://doi.org/10.22049/CCO.2022.27600.1296.
[30] S. Alikhani and N. Ghanbari, Sombor index of polymers, MATCH Commun. Math. Comput. Chem. 86 (2021) 715–728.
[31] R. Cruz and J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem. 59 (2021) 1098–1116, https://doi.org/10.1007/s10910-021-01232-8.
[32] N. Dehgardi, Lower bounds on the entire Sombor index, Iranian J. Math. Chem. 14 (2023) 195–205, https://doi.org/ 10.22052/IJMC.2023.253281.1739.
[33] N. Dehgardi and Y. Shang, First irregularity Sombor index of trees with fixed maximum degree, Res. Math. 11 (2024) #2291933, https://doi.org/10.1080/27684830.2023.2291933.
[34] T. Došlic, T. Réti and A. Ali, On the structure of graphs with integer Sombor indices, Discrete Math. Lett. 7 (2021) 1–4, https://doi.org/10.47443/dml.2021.0012.
[35] I. Gutman, Some basic properties of Sombor indices, Open J. Discrete Appl. Math. 4 (2021) 1–3, https://doi.org/10.30538/psrp-odam2021.0047.
[36] S. Kosari, N. Dehgardi and A. Khan, Lower bound on the KG-Sombor index, Commun. Comb. Optim. 8 (2023) 751–757, https://doi.org/10.22049/CCO.2023.28666.1662.
[37] C. Phanjoubam, S. M. Mawiong and A. M. Buhphang, On Sombor coindex of graphs, Commun. Comb. Optim. 8 (2023) 513–529.
[38] H. S. Ramane, I. Gutman, K. Bhajantri and D. V. Kitturmath, Sombor index of some graph transformations, Commun. Comb. Optim. 8 (2023) 193–205, https://doi.org/10.22049/CCO.2021.27484.1272.