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Abstract

The Sombor index is a newly introduced vertex-degree-based
graph invariant with the ability to predict the enthalpy of va-
porization and entropy of octane isomers. Recently, two new
variants of the Sombor index namely the reduced and increased
Sombor indices were put forward. The reduced and increased
Sombor indices are respectively defined for graph Γ as

SOred(Γ) =
∑

FG∈E(Γ)

√
(dΓ(F)− 1)2 + (dΓ(G)− 1)2,

and

SO‡(Γ) =
∑

FG∈E(Γ)

√
(dΓ(F) + 1)2 + (dΓ(G) + 1)2,

in which dΓ(F) is the degree of the vertex F in Γ. Our purpose
is to establish sharp lower bounds on the reduced and increased
Sombor indices of trees in terms of their order and maximum
vertex degree. Moreover, the extremal trees that attain the
bounds are characterized.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction

Consider a simple connected graph Γ where V (Γ) and E(Γ) are its vertex and edge sets, re-
spectively. For F ∈ V (Γ), the set NΓ(F) = {G ∈ V (Γ) : FG ∈ E(Γ)} is called the open
neighborhood of the vertex F in Γ and the degree dΓ(F) of F in Γ is the order of NΓ(F). Let
Dmax = Dmax(Γ) = max{dΓ(F) : F ∈ V (Γ)} be the maximum vertex degree of Γ. The distance
dΓ(F ,G) is the number of edges in the shortest path connecting the vertices F and G in Γ.
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A pendent vertex in a tree is called a leaf and a vertex incident to a leaf is said to be a
support vertex. A support vertex incident to more than one leaf is a strong support vertex. A
rooted tree is a tree with a vertex recognized as the root. If G is a non-root vertex in a tree,
the vertex adjacent to G on the path joining G and the root vertex is known as the parent of G.

A tree with at most a vertex F of degree greater than 2 is a spider and F is called its center.
If all vertices of a spider are of degree at most 2, then every vertex can be considered as its
center. A path connecting the center of a spider to one of its pendent vertices is called a leg
of the spider. By this definition, an n-vertex star can be seen as a spider containing n− 1 legs
and an n-vertex path is a spider having 1 or 2 legs.

Graph invariants are real numbers associated with a graph that are invariants under all graph
isomorphisms. One of the most important categories of graph invariants is vertex-degree-based
invariants. Zagreb indices [1, 2] are the oldest members of this category which are defined as:

M1(Γ) =
∑
F∈V (Γ)

d2
Γ(F), M2(Γ) =

∑
FG∈E(Γ)

dΓ(F)dΓ(G).

Further information on these indices can be found in [3–5].
In the last decade, some variants of the Zagreb indices such as Zagreb coindices [6–10],

reformulated Zagreb indices [11, 12], multiplicative Zagreb indices [13–16], Lanzhou index [17–
19] and entire Zagreb indices [20, 21] have been considered. One of such variants is the Sombor
index which was suggested by Gutman [22] in 2021. Its definition for a graph Γ is

SO(Γ) =
∑

FG∈E(Γ)

√
d2

Γ(F) + d2
Γ(G).

Gutman [22] also put forward a modification of the Sombor index as:

SOred(Γ) =
∑

FG∈E(Γ)

√
(dΓ(F)− 1)2 + (dΓ(G)− 1)2,

and named it the reduced Sombor index. Another modification of the Sombor index entitled
the increased Sombor index was proposed by Das et al. [23] as:

SO‡(Γ) =
∑

FG∈E(Γ)

√
(dΓ(F) + 1)2 + (dΓ(G) + 1)2.

It is interesting to note that, the Sombor index, reduced Sombor index, and increased Sombor
index are all special cases of the (p, q)-Sombor index proposed by Milovanović et al. [24] as:

SOp,q(Γ) =
∑

FG∈E(Γ)

(
(dΓ(F) + q)p + (dΓ(G) + q)p

) 1
p

,

where p, q are real numbers and p 6= 0. Das et al. [25, 26] presented upper and lower bounds on
SO(Γ) in terms of certain parameters of Γ. Wang et al. [27] considered the relationships between
SO(Γ) and some other degree-based invariants of Γ. Réti et al. [28] computed the maximum
values of SO(Γ) among all r-cyclic connected graphs Γ with n vertices, for 1 ≤ r ≤ n − 2.
For more information about variants of the Sombor index, see [24, 29–38] and the references
therein.

Here, we give sharp lower bounds on SOred(τ) and SO‡(τ) where τ is a tree with a given
order and maximum vertex degree. Moreover, we determine the extremal tree τ which attains
the bounds.

The following observation are immediately achieved from the definitions of SOred and SO‡
indices.
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Observation 1.1. If E /∈ E(Γ), then

SOred(Γ + E) > SOred(Γ),

and

SO‡(Γ + E) > SO‡(Γ).

2 Main results

Throughout this section, let T (n,Dmax) be the set of trees with order n and maximum degree
Dmax. Assume that τ ∈ T (n,Dmax) is a rooted tree in which a vertex x of degree Dmax is
considered to be its root. Also let Nτ (x) = {x1, x2, . . . , xDmax

}. We begin by proving three
useful lemmas.

Lemma 2.1. If τ has a non-root strong support vertex of degree greater than or equal to 3,
then there exists a tree τ ′ ∈ T (n,Dmax) with SOred(τ) > SOred(τ

′) and SO‡(τ) > SO‡(τ ′).

Proof. Suppose that y 6= x is a strong support vertex and dT (y) = α ≥ 3 where dτ (x, y) is
as large as possible and let Nτ (y) = {y1, y2, . . . , yα}. Without loss of generality, let yα be the
parent of y and dτ (y1) = dτ (y2) = 1. Denote by τ ′ the tree achieved by attaching the path
y1y2y to τ − {y1, y2}. Clearly, τ ′ ∈ T (n,Dmax). Since α ≥ 3, we get

SOred(τ)− SOred(τ ′) =
∑

rs∈E(τ)

√
(dτ (r)− 1)2 + (dτ (s)− 1)2

−
∑

rs∈E(τ ′)

√
(dτ ′(r)− 1)2 + (dτ ′(s)− 1)2 =

√
(dτ (y1)− 1)2 + (dτ (y)− 1)2

+
√

(dτ (y2)− 1)2 + (dτ (y)− 1)2 +

α∑
i=3

√
(dτ (y)− 1)2 + (dτ (yi)− 1)2

−
√

(dτ ′(y1)− 1)2 + (dτ ′(y2)− 1)2 −
√

(dτ ′(y2)− 1)2 + (dτ ′(y)− 1)2

−
α∑
i=3

√
(dτ (y)− 2)2 + (dτ (yi)− 1)2 = 2(α− 1) +

α∑
i=3

√
(α− 1)2 + (dτ (yi)− 1)2

− 1−
√

(α− 2)2 + 1−
α∑
i=3

√
(α− 2)2 + (dτ (yi)− 1)2 > 2(α− 1)− 1−

√
(α− 2)2 + 1 > 0,
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and

SO‡(τ)− SO‡(τ ′) =
∑

rs∈E(τ)

√
(dτ (r) + 1)2 + (dτ (s) + 1)2

−
∑

rs∈E(τ ′)

√
(dτ ′(r) + 1)2 + (dτ ′(s) + 1)2 =

√
(dτ (y1) + 1)2 + (dτ (y) + 1)2

+
√

(dτ (y2) + 1)2 + (dτ (y) + 1)2 +

α∑
i=3

√
(dτ (y) + 1)2 + (dτ (yi) + 1)2

−
√

(dτ ′(y1) + 1)2 + (dτ ′(y2) + 1)2 −
√

(dτ ′(y2) + 1)2 + (dτ ′(y) + 1)2

−
α∑
i=3

√
d2
τ (y) + (dτ (yi) + 1)2 = 2

√
(α+ 1)2 + 4 +

α∑
i=3

√
(α+ 1)2 + (dT (yi) + 1)2

−
√

13−
√
α2 + 9−

α∑
i=3

√
α2 + (dT (yi) + 1)2 > 2

√
(α+ 1)2 + 4−

√
13−

√
α2 + 9 > 0.

Hence the desired results hold. �

Lemma 2.2. If τ has a non-root support vertex of degree greater than or equal to 3, then there
exists a tree τ ′ ∈ T (n,Dmax) with SOred(τ) > SOred(τ

′) and SO‡(τ) > SO‡(τ ′).

Proof. Assume that y 6= x is a support vertex of degree dτ (y) = α ≥ 3 where dτ (x, y) is as
large as possible and suppose Nτ (y) = {y1, y2, . . . , yα}. Let yα be the parent of y. Since y
is a support vertex, it may be assumed that dτ (y1) = 1 and by Lemma 2.1, dτ (yi) = 2 for
2 ≤ i ≤ α − 1. Let yz1z2 . . . zt be a path in τ where t ≥ 2 and y2 = z1. Assume that τ ′ is the
tree derived from τ − {y1} by attaching the path zty1. Since α ≥ 3, we obtain:

SOred(τ)− SOred(τ ′) =
∑

rs∈E(τ)

√
(dτ (r)− 1)2 + (dτ (s)− 1)2

−
∑

rs∈E(τ ′)

√
(dτ ′(r)− 1)2 + (dτ ′(s)− 1)2 =

√
(dτ (y1)− 1)2 + (dτ (y)− 1)2

+
√

(dτ (zt)− 1)2 + (dτ (zt−1)− 1)2 +

α∑
i=2

√
(dτ (y)− 1)2 + (dτ (yi)− 1)2

−
√

(dτ ′(y1)− 1)2 + (dτ ′(zt)− 1)2 −
√

(dτ ′(zt)− 1)2 + (dτ ′(zt−1)− 1)2

−
α∑
i=2

√
(dτ (y)− 2)2 + (dτ (yi)− 1)2 = α− 1 + 1 +

α∑
i=2

√
(α− 1)2 + (dτ (yi)− 1)2

− 1−
√

2−
α∑
i=2

√
(α− 2)2 + (dτ (yi)− 1)2 > α− 1−

√
2 > 0,
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and

SO‡(τ)− SO‡(τ ′) =
∑

rs∈E(τ)

√
(dτ (r) + 1)2 + (dτ (s) + 1)2

−
∑

rs∈E(τ ′)

√
(dτ ′(r) + 1)2 + (dτ ′(s) + 1)2 =

√
(dτ (y1) + 1)2 + (dτ (y) + 1)2

+
√

(dτ (zt) + 1)2 + (dτ (zt−1) + 1)2 +

α∑
i=2

√
(dτ (y) + 1)2 + (dτ (yi) + 1)2

−
√

(dτ ′(y1) + 1)2 + (dτ ′(zt) + 1)2 −
√

(dτ ′(zt) + 1)2 + (dτ ′(zt−1) + 1)2

−
α∑
i=2

√
d2
τ (y) + (dτ (yi) + 1)2 =

√
(α+ 1)2 + 4 +

√
13 +

α∑
i=2

√
(α+ 1)2 + (dτ (yi) + 1)2

−
√

13−
√

18−
α∑
i=2

√
α2 + (dτ (yi) + 1)2 >

√
(α+ 1)2 + 4−

√
18 > 0,

and the desired results hold. �

Lemma 2.3. If τ has a non-root vertex of degree greater than or equal to 3, then there exists
a tree τ ′ ∈ T (n,Dmax) with SOred(τ) > SOred(τ

′) and SO‡(τ) > SO‡(τ ′).

Proof. Assume that y 6= x is a support vertex and dτ (y) = α ≥ 3 where dτ (x, y) is as large
as possible and suppose Nτ (y) = {y1, y2, . . . , yα}. Let yα be the parent of y. By Lemmas 2.1
and 2.2, dτ (yi) = 2 for 1 ≤ i ≤ α − 1. Let yz1z2 . . . zt and yw1w2 . . . wk be two paths in τ for
t, k ≥ 2 with y1 = w1 and y2 = z1. Let τ ′ be the tree deduced from τ by removing the edge
xy1 and adding the edge zty1. Since α ≥ 3, we get:

SOred(τ)− SOred(τ ′) =
∑

rs∈E(τ)

√
(dτ (r)− 1)2 + (dτ (s)− 1)2

−
∑

rs∈E(τ ′)

√
(dτ ′(r)− 1)2 + (dτ ′(s)− 1)2

=
√

(dτ (y1)− 1)2 + (dτ (y)− 1)2

+
√

(dτ (zt)− 1)2 + (dτ (zt−1)− 1)2

+

α∑
i=2

√
(dτ (y)− 1)2 + (dτ (yi)− 1)2

−
√

(dτ ′(y1)− 1)2 + (dτ ′(zt)− 1)2

−
√

(dτ ′(zt)− 1)2 + (dτ ′(zt−1)− 1)2

−
α∑
i=2

√
(dτ (y)− 2)2 + (dτ (yi)− 1)2

=
√

(α− 1)2 + 1 + 1 +

α∑
i=2

√
(α− 1)2 + (dτ (yi)− 1)2

− 2
√

2−
α∑
i=2

√
(α− 2)2 + (dτ (yi)− 1)2

>
√

(α− 1)2 + 1 + 1− 2
√

2 > 0,
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and

SO‡(τ)− SO‡(τ ′) =
∑

rs∈E(τ)

√
(dτ (r) + 1)2 + (dτ (s) + 1)2

−
∑

rs∈E(τ ′)

√
(dτ ′(r) + 1)2 + (dτ ′(s) + 1)2

=
√

(dτ (y1) + 1)2 + (dτ (y) + 1)2

+
√

(dτ (zt) + 1)2 + (dτ (zt−1) + 1)2

+

α∑
i=2

√
(dτ (y) + 1)2 + (dτ (yi) + 1)2

−
√

(dτ ′(y1) + 1)2 + (dτ ′(zt) + 1)2

−
√

(dτ ′(zt) + 1)2 + (dτ ′(zt−1) + 1)2

−
α∑
i=2

√
d2
τ (y) + (dτ (yi) + 1)2

=
√

(α+ 1)2 + 9 +
√

13 +

α∑
i=2

√
(α+ 1)2 + (dτ (yi) + 1)2

− 2
√

18−
α∑
i=2

√
α2 + (dτ (yi) + 1)2

>
√

(α+ 1)2 + 9 +
√

13− 2
√

18 > 0,

and the proof is completed. �

Proposition 2.4. Consider a spider τ with n vertices and l ≥ 3 legs. If τ contains a leg with
length 1 and another leg with a length of at least 3, then there exists a spider τ ′ with n vertices
and l legs for which SOred(τ) > SOred(τ

′) and SO‡(τ) > SO‡(τ ′).

Proof. Denote by x the center of τ and assume that Nτ (x) = {x1, . . . , xl}. Root τ at x. One
may assume that dτ (x1) = 1. Let x2y1y2 . . . yt, t ≥ 2 be a leg of τ with greatest length. Denote
by τ ′ the tree derived from τ by removing the edge ytyt−1 and adding the pendent edge x1yt.
From the definition, we have:

SOred(τ)− SOred(τ ′) =
∑

rs∈E(τ)

√
(dτ (r)− 1)2 + (dτ (s)− 1)2

−
∑

rs∈E(τ ′)

√
(dτ ′(r)− 1)2 + (dτ ′(s)− 1)2

=
√

(Dmax − 1)2 +
√

2−
√

(Dmax − 1)2 + 1− 1 > 0,

and

SO‡(τ)− SO‡(τ ′) =
∑

rs∈E(τ)

√
(dτ (r) + 1)2 + (dτ (s) + 1)2

−
∑

rs∈E(τ ′)

√
(dτ ′(r) + 1)2 + (dτ ′(s) + 1)2

=
√

(Dmax + 1)2 + 4 +
√

18−
√

(Dmax + 1)2 + 9−
√

13 > 0.

This complete the proof. �
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Here, we state our main results.

Theorem 2.5. Let τ ∈ T (n,Dmax) and n ≥ 3. If Dmax ≤ n−1
2 , then

SOred(τ) ≥ Dmax
√

(Dmax − 1)2 + 1 +
√

2(n− 2Dmax − 1) +Dmax,

otherwise,

SOred(τ) ≥ (2Dmax + 1− n)(Dmax − 1) + (n−Dmax − 1)(
√

(Dmax − 1)2 + 1 + 1).

The equality holds if and only if τ is a spider with all legs are of length less than 3 or all legs
are of length more than 1.

Proof. Assume that τ∗ ∈ T (n,Dmax) is a tree of order at least 3 such that

SOred(τ
∗) = min{SOred(τ) : τ ∈ T (n,Dmax)}.

Select a vertex x with dτ∗(x) = Dmax as the root vertex of τ∗. If Dmax = 2, then τ is an
n-vertex path and SOred(Pn) =

√
2(n − 3) + 2. If Dmax ≥ 3, then by the selection of τ∗, it is

clear from Lemmas 2.1 to 2.3, that τ∗ must be a spider centered at x. By Proposition 2.4 and
the selection of τ∗, all legs of τ∗ are of length less than 3 or all are of length more than 1. First,
consider the case that all legs of τ∗ are of length more than 1. It is obvious that Dmax ≤ n−1

2
and

SOred(τ) ≥ Dmax
√

(Dmax − 1)2 + 1 +
√

2(n− 2Dmax − 1) +Dmax.

Now let all legs of τ∗ be of length less than 3. Considering the previous case, it might be
assumed that τ∗ contains a leg of length 1. In case τ∗ = Sn, then there is nothing to prove,
otherwise there are 2Dmax + 1− n leaves adjacent to x and we get

SOred(τ) ≥ (2Dmax + 1− n)(Dmax − 1) + (n−Dmax − 1)(
√

(Dmax − 1)2 + 1 + 1),

and the desired result holds. �

Using the same argument as given in Theorem 2.5, we arrive at:

Theorem 2.6. Let τ ∈ T (n,Dmax) and n ≥ 3. If Dmax ≤ n−1
2 , then

SO‡(τ) ≥ Dmax
√

(Dmax + 1)2 + 9 +
√

18(n− 2Dmax − 1) +
√

13Dmax,

otherwise,

SO‡(τ) ≥ (2Dmax + 1− n)
√

(Dmax + 1)2 + 4 + (n−Dmax − 1)(
√

(Dmax + 1)2 + 9 +
√

13).

The equality holds if and only if τ is a spider with all legs are of length less than 3 or all legs
are of length more than 1.

In Figure 1, three trees of orders n = 8, 9, 10 with maximum degree Dmax = 4 and minimum
SOred and SO‡ indices are depicted.
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Figure 1. Trees with n = 8, 9, 10 and Dmax = 4.

By Observation 1.1, we arrive at the following corollaries.

Corollary 2.7. Let Γ be a graph with n vertices and maximum degree Dmax. If Dmax ≤ n−1
2 ,

then
SOred(Γ) ≥ Dmax

√
(Dmax − 1)2 + 1 +

√
2(n− 2Dmax − 1) +Dmax,

otherwise,

SOred(Γ) ≥ (2Dmax + 1− n)(Dmax − 1) + (n−Dmax − 1)(
√

(Dmax − 1)2 + 1 + 1),

with equality if and only if Γ is a spider with all legs are of length less than 3 or all legs are of
length more than 1.

Corollary 2.8. Let Γ be a graph of order n and maximum degree Dmax. If Dmax ≤ n−1
2 , then

SO‡(Γ) ≥ Dmax
√

(Dmax + 1)2 + 9 +
√

18(n− 2Dmax − 1) +
√

13Dmax,

otherwise,

SO‡(Γ) ≥ (2Dmax + 1− n)
√

(Dmax + 1)2 + 4 + (n−Dmax − 1)(
√

(Dmax + 1)2 + 9 +
√

13),

with equality if and only if Γ is a spider with all legs are of length less than 3 or all legs are of
length more than 1.
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