Compared‎ ‎Two Models‎ ‎for Shifted the Gap Energy in Acenes; Quantum Perturbation Theory and Topological Indices

Document Type : Research Paper

Authors

1 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran

10.22052/ijmc.2024.254055.1804

Abstract

‎Acenes‎, ‎which can be represented by the chemical formula $C_{4n+2} H_{2n+4}$‎, ‎belong to a group of organic molecules that have attracted significant attention in the fields of electronic molecules and nanoscale research‎. ‎Investigating their electronic and optical properties‎, ‎particularly for larger acenes‎, ‎is a highly resource-intensive and time-consuming endeavor‎. ‎The objective of this study is to propose a novel approach for analyzing changes in the energy gap using quantum perturbation theory and disorder theory‎, ‎relying on topological indices‎. ‎In order to quantify the alterations in the energy gap‎, ‎the Hamiltonian matrix of spin-orbit interaction‎, ‎based on quantum perturbation theory‎, ‎has been utilized‎. ‎Consequently‎, ‎the changes in the energy gap between singlet and triplet states‎, ‎denoted as $E_g$‎, ‎have been computationally determined for the carbon-carbon bonds‎. ‎Ultimately‎, ‎a comprehensive model has been developed to illustrate the variations in the energy gap between singlet and triplet spin states of linear acenes‎, ‎incorporating the concept of topological indices.

Keywords

Main Subjects


[1] A. J. Pérez-Jiménez and J. C. Sancho-Garcia, Conductance enhancement in nanographenegold junctions by molecular $\pi$-stacking, J. Am. Chem. Soc. 131 (2009) 14857–14867, https://doi.org/10.1021/ja904372d.
[2] J. C. Sancho-Garcia and A. J. Pérez-Jiménez, Charge-transport properties of prototype molecular materials for organic electronics based on graphene nanoribbons, Phys. Chem. Chem. Phys. 11 (2009) 2741–2746, https://doi.org/10.1039/B821748C.
[3] D. Jiang and S. Dai, Circumacenes versus periacenes: HOMO-LUMO gap and transition from nonmagnetic to magnetic ground state with size, Chem. Phys. Lett. 466 (2008) 72–75, https://doi.org/10.1016/j.cplett.2008.10.022.
[4] F. Koorepazan-Moftakhar, A. R. Ashrafi, O. Ori and M. V. Putz, Sphericality of Some Classes of Fullerenes Measured by Topology, Chapter 11, Fullerenes: Chemistry, Natural Sources and Technological Applications, Nova Science Publishers, 2014, 285–304.
[5] D. Bonchev, O. Mekenyan and V. Kamenska, A topological approach to the modeling of polymer properties, J. Math. Chem. 11 (1992) 107–132, https://doi.org/10.1007/BF01164197.
[6] D. J. Klein and D. Babic, Partial orderings in chemistry, J. Chem. Inf. Comput. Sci. 37 (1997) 656–671, https://doi.org/10.1021/ci9601776.
[7] I. Gutman, B. Furtula and C. Elphick, Three, new/old vertex–degree–based topological indices, MATCH Commun. Math. Comput. Chem. 72 (2014) 617–632.
[8] A. T. Balaban, Chemical Applications of Graph Theory, Academic Press, London, UK, 1976.
[9] J. Devillers and A. T. Balaban, (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, The Netherlands, 1999.
[10] R. Garcia-Domenech, A. Villanueva, J. Galvez and R. Gozalbes, Application de la topologie moleculaire a la prediction de la viscosite liquide des composes organiques, J. Chim. Phys. 96 (1999) 1172–1185, https://doi.org/10.1051/jcp:1999205.
[11] O. Ivanciuc, T. Ivanciuc and A. T. Balaban, Quantitative structure-property relationship study of normal boiling points for halogen-/ oxygen-/ sulfur-containing organic compounds using the CODESSA program, Tetrahedron 54 (1998) 9129–9142, https://doi.org/10.1016/S0040-4020(98)00550-X.
[12] K. C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103–112.
[13] A. Iranmanesh and Y. Pakravesh, Edge detour index of TUC4C8(S) nanotube, Optoelectron. Adv. Mater. Rapid Commun. 4 (2010) 264–266.
[14] M. Azari and A. Iranmanesh, Harary index of some nano-structures, MATCH Commun. Math. Comput. Chem. 71 (2014) 373–382.
[15] M. Azari and A. Iranmanesh, Chemical graphs constructed from rooted product and their Zagreb indices, MATCH Commun. Math. Comput. Chem. 70 (2013) 901–919.
[16] A. Iranmanesh and M. V. Diudea, Cluj-Tehran index, MATCH Commun. Math. Comput. Chem. 69 (2013) 121–130.
[17] A. Iranmanesh and Y. Alizadeh, Balaban and Randic indices of IPRC80 fullerene Isomers, Zigzag nanotubes and grapheme, Int. J. Nanosci. Nanotechnol. 7 (2011) 28–34.
[18] A. Iranmanesh and Y. Alizadeh, Computing Wiener and Schultz indices of HAC5C7 [p, q] nanotube by GAP program, Am. J. Appl. Sci. 5 (2008) 1754–1757, https://doi.org/10.3844/ajassp.2008.1754.1757.
[19] R. Kazemi, A. Behtoei and A. Kohansal, The Zagreb index of bucket recursive trees, Math. Interdisc. Res. 5 (2020) 103–111, https://doi.org/10.22052/MIR.2020.204312.1166.
[20] A. Ebrahimi, M. Monemzadeh, H. Moshafi and SMS Movahed, Tension reduction between planck data and LSS by dynamical dark energy model, Math. Interdisc. Res. 5 (2020) 113–130, https://doi.org/10.22052/MIR.2019.176929.1127.
[21] M. Azari, On eccentricity version of Zagreb coindices, Math. Interdisc. Res. 6 (2021) 107–120, https://doi.org/10.22052/MIR.2021.240325.1247.
[22] F. Movahedi, Bounds on the minimum edge dominating energy in terms of some parameters of a graph, Math. Interdisc. Res. 8 (2023) 175–187, https://doi.org/10.22052/MIR.2023.248452.1379.
[23] J. J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, 1967.
[24] D. J. Griffiths, Introduction to Quantum Mechanics, 2nd Edition, Addison-Wesley Press, Boston, 2004.
[25] E. San-Fabiín and F. Moscardó, Polarized–unpolarized ground state of small polycyclic aromatic hydrocarbons, Int. J. Quantum Chem. 113 (2013) 815–819, https://doi.org/10.1002/qua.24090.