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Abstract

Acenes, which can be represented by the chemical formula
C4n+2H2n+4, belong to a group of organic molecules that
have attracted significant attention in the fields of electronic
molecules and nanoscale research. Investigating their electronic
and optical properties, particularly for larger acenes, is a highly
resource-intensive and time-consuming endeavor. The objective
of this study is to propose a novel approach for analyzing
changes in the energy gap using quantum perturbation theory
and disorder theory, relying on topological indices. In order
to quantify the alterations in the energy gap, the Hamiltonian
matrix of spin-orbit interaction, based on quantum perturbation
theory, has been utilized. Consequently, the changes in the
energy gap between singlet and triplet states, denoted as Eg,
have been computationally determined for the carbon-carbon
bonds. Ultimately, a comprehensive model has been developed
to illustrate the variations in the energy gap between singlet
and triplet spin states of linear acenes, incorporating the
concept of topological indices.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction
Molecular electronic, or molectronic, is a branch of nano-electronic that discusses the whatness
and use of small groups of molecules on nanoscale or single molecules in electronic circuits. The
production of electronic circuits through a single-molecule approach is the ideal perspective of
nano-electronic. Therefore, attention to micro-structured pieces in recent years has resulted
in the emergence of nano-electronic branches [1, 2]. Acenes, which have a chemical formula
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of C4n+2H2n+4, are a group of organic molecules that have garnered considerable attention in
the fields of electronic molecules and nanoscale. Recent discoveries have revealed that larger
acenes, consisting of six to 10 rings, can be found in volcanic ash and interplanetary dust. These
larger acenes exhibit remarkable suitability for use in electronic components [3]. However, the
exploration and analysis of this family of nano-structures necessitates substantial investments
in terms of both time and finances. Therefore, it would be greatly advantageous to have a
reliable pattern that can accurately predict the electronic characteristics of acenes. Topological
indices offer a cost-effective and practical approach to achieve this objective.

Topological indices have been devised in the field of chemistry to analyze molecular graphs,
and they are represented based on graph properties such as connectivity and vertex distances.
These indices enable the description and prediction of various chemical, physical, and electronic
characteristics of the molecule [4, 5]. They are categorized into distinct branches depending on
their specific definitions [6].

In a scholarly article by Ivan Gutman, three noteworthy topological indices were presented.
These indices are denoted as RM2 (reduced second Zagreb index), RR (reduced Randic index),
and RRR (reduced reciprocal Randic index) [7].

In this paper, we present a new model based on topological indices for gap energy changes
in a linear acene family. Thus, RR,RM2, and RRR topological indices will be scrutinized in
a linear acene family and the estimated values will be compared with those obtained from the
quantum model.

2 Definitions and notations
A graph is a set of points and connecting lines, which are also referred to as vertices and edges,
respectively. When an edge, denoted as e, connects two vertices, i and j, it is written as e = ij,
indicating that i and j are adjacent. A graph is called connected if there exists at least one
path between every pair of vertices.

One practical application of graph theory in the field of chemistry involves quantifying
chemical structures using graph invariants. These invariants can take the form of polynomials,
spectra, atomic properties, or molecular topological indices [8–10].

A topological index is a numerical representation derived from specific topological attributes
of a molecular graph, capturing key characteristics of the molecular structure. These indices play
a crucial role in quantifying structural similarity or diversity, thereby offering valuable insights
into the variety present in chemical databases. The primary objective of employing topological
indices is to serve as numerical descriptors for chemical structures within QSPR and QSAR
models, facilitating their analysis and prediction ([11–22]). Since isomorphic graphs exhibit
identical values for any given topological index, these indices remain unchanged regardless of
the labeling of the molecular graph. The topological indices for RR(G), RRR(G), and RM2(G)
are defined as follows [7]:

RR = RR (G) =
∑

ij∈E(G)

√
didj , (1)

RM2 = RM2 (G) =
∑

ij∈E(G)

(dj − 1) (di − 1) , (2)

RRR = RRR (G) =
∑

ij∈E(G)

√
(dj − 1) (di − 1) , (3)

where di is the degree of vertex i. So the bra-ket notation is the following: Say we have two
quantum states φ and ψ. Those are vectors in an inner product space. The inner product
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between them is < φ|ψ >. In a stroke of weird notation, physicists denote the vector ψ by
|ψ >. This is called a ket, since it is the later part of a bracket. This has the perk that if ϕn is
a collection of vectors then we can denote the kets by |n > istead of |ϕn >.

In the bond between two carbon atoms, electrons are coupled together in the second level
(n = 2, L = 1) and occupy singlet and triplet states, as shown in the following [23]:

|κT,1〉 =

∣∣∣∣12 , 1

2

〉
1

∣∣∣∣12 , 1

2

〉
2

, (4)

|κT,0〉 =
1√
2

(∣∣∣∣12 , 1

2

〉
1

∣∣∣∣12 ,−1

2

〉
2

+

∣∣∣∣12 ,−1

2

〉
1

∣∣∣∣12 , 1

2

〉
2

)
, (5)

|κT,−1〉 =

∣∣∣∣12 ,−1

2

〉
1

∣∣∣∣12 ,−1

2

〉
, (6)

|κS,0〉 =
1√
2

(∣∣∣∣12 , 1

2

〉
1

∣∣∣∣12 ,−1

2

〉
2

−
∣∣∣∣12 ,−1

2

〉
1

∣∣∣∣12 , 1

2

〉
2

)
. (7)

Indices 1 and 2 in the above equations are related to the first and second electrons respectively.
This interaction yields the following eigenfunctions [23]:

|ψT,ms
〉 = |φ(−→r )〉 |κT,ms

〉 , (8)

|ψS,0〉 = |φ(−→r )〉 |κS,0,〉 . (9)

In the above equations,
∣∣∣φ(
−→
r)
〉

denotes the spatial part of the wave function. On the other
hand, this spin–orbit interaction is presentable through the following Hamiltonian [23, 24]:

HL−S = H1(L−S) +H2(L−S) = 2
[

1
2µc2

1
r
dV (r)
dr

]
= 1

µc2
1
r
dV (r)
dr

[
1
2 (L+S− + L−S+) + LzSz

]
, (10)

where µ is reduced electron mass, V (r) is potential energy, L̄ and S̄ are the extents of spinal
and orbital angular momentum respectively, and c is the speed of light. Both electrons have
similar conditions and, consequently, have similar Hamiltonian. This Hamiltonian results in
ground energy change and a fine structure, which is calculated using perturbation theory in
quantum mechanics.

3 Methods

3.1 Quantum investigation of gap energy change
To calculate the shift of gap energy, a Hamilton matrix of spin–orbit interaction of Equation
(8) has been used:

HL−S =


H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

 =


〈ψT,1|HL−S |ψT,1〉 〈ψT,1|HL−S |ψT,0〉 〈ψT,1|HL−S |ψT,−1〉 〈ψT,1|HL−S |ψS,0〉
〈ψT,0|HL−S |ψT,1〉 〈ψT,0|HL−S |ψT,0〉 〈ψT,0|HL−S |ψT,−1〉 〈ψT,0|HL−S |ψS,0〉
〈ψT,−1|HL−S |ψT,1〉 〈ψT,−1|HL−S |ψT,0〉 〈ψT,−1|HL−S |ψT,−1〉 〈ψT,−1|HL−S |ψS,0〉
〈ψS,0|HL−S |ψT,1〉 〈ψS,0|HL−S |ψT,0〉 〈ψS,0|HL−S |ψT,−1〉 〈ψS,0|HL−S |ψS,0〉

 ,
(11)
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After that, we have:
|ψT,ms

〉 = |Rnl〉 |ylm〉 |κT,ms
〉 , (12)

|ψS,0〉 = |Rnl〉 |ylm〉 |κS,0, 〉 . (13)

We conclude that:

HL−S =
1

µc2
〈R21|

1

r

dV (r)

dr
|R21〉 ×


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 , (14)

where Mij is computed by the relations:

M11 = 〈y1,m|
〈
κT,1

∣∣ [1
2
(L+S− + L−S+) + LzSz

] ∣∣κT,1

〉
|y1,m〉 = 〈y1,m|Lz |y1,m〉

〈
κT,1

∣∣Sz

∣∣κT,1

〉
= m~2,

(15)

M33 = 〈y1,m|
〈
κT,−1

∣∣ [1
2
(L+S− + L−S+) + LzSz

] ∣∣κT,−1

〉
|y1,m〉 = 〈y1,m|Lz |y1,m〉

〈
κT,−1

∣∣Sz

∣∣κT,−1

〉
= −m~2,

(16)
wherem ∈ {−1, 0, 1}. Other elements ofMij in Equation (14) are equal to zero. It is important
to point out here that each electron is spatially dependent on one atom of carbon and it is action
just in spatial part. And since:

V (r) = −ze
2

r
, (17)

where z is the carbon atomic number. Thus, based on [17], the radial segment in Equation (14)
is equal to:

〈R21|
1

r

dV (r)

dr
|R21〉 = ze2 〈R21|

1

r3
|R21〉 =

ze2

24a30
, (18)

where a0 is the Boher radius. Based on Equations (15), (16) and (17), the Hamilton matrix
turns into the following:

HL−S =


mze2~2

24µc2a30
0 0 0

0 0 0 0

0 0 −mze2~2

24µc2a30
0

0 0 0 0

 . (19)

To calculate the effect of fine structures through special value equation, the following determi-
nant is used:∣∣∣∣∣∣∣∣∣∣

mze2~2

24µc2a30
−∆E

(1)
nL−S 0 0 0

0 −∆E
(1)
nL−S 0 0

0 0 −mze2~2

24µc2a30
−∆E

(1)
nL−S 0

0 0 0 −∆E
(1)
nL−S

∣∣∣∣∣∣∣∣∣∣
= 0. (20)

Based on various m, m ∈ {−1, 0, 1}, since the above determinant must be zero, we obtain:

∆E(1)
nL−S

∈
{

0,± ze2~2

24µc2a30

}
. (21)
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Hence, we have:

∆E(1)
nL−S

∈
{

0,±1.45× 10−3(ev)
}
. (22)

Therefore, the difference in energy levels between singlet and triplet states, along with the
alteration in the Eg value for the carbon-carbon bond, can be described as:

∆0 = ∆Eg = ∆EL−S = 2.9× 10−3eV. (23)

When a bond or several bonds are established among some carbon atoms, investigating the
shift of gap energy would be more complex. This is even greater complexity in the case of
carbon nanostructures that consist of several carbon bonds. Therefore, searching for methods
and providing models is necessary for explicating changes in gap energy. In a single-ring carbon
structure with N atoms, in which each atom is bonded solely with two other atoms, as shown
in Figure 1, the mean of gap energy changes can be computed using the following formula:

∆1 =

(
b

N

)(
N2

b2
∆0

)
= ∆0, (24)

where b is the number of bonds equal to N,N2 and b2 are the number of atoms which bond
with individual carbon and the number of bonds between them respectively, and N2 = b2 = 2.
But, in n ring structures, in which some atoms establish triple bonds, the mean of gap energy
shifted is calculated in the following manner:

∆n =

(
b

N

)[
n∆1 + 3N3∆0

]
, (25)

where N3 in the above formula is the number of atoms with triple bonds, and b3 = 1 is the
number of bonds between these atoms. Number 3 is the number of spin–orbit interactions
between them.

In the family of linear acenes, we have (Figure 2):

N3 = 2 (n− 1) , (26)

b = 5n+ 1, (27)

N = 4n+ 2. (28)

According to Equations (24)-(28), gap energy changes in linear acene family are calculated as
follows:

∆n =

(
5n+ 1

4n+ 2

)
(7n− 6) ∆0 (eV ). (29)

The rest of the paper attempts to present a new model based on topological indices for gap
energy changes in a linear acene family. Thus, RR,RM2, and RRR topological indices will
be scrutinized in a linear acene family and the estimated values will be compared with those
obtained from the quantum model, as shown in Equation (29).

Investigating gap energy changes becomes more difficult when the bond is established among
several atoms of carbon. This becomes even more complex when the structure of multiple carbon
atom bonds is on the nanoscale, which is why designing a model for calculating the changes in
gap energy is so important. In continuation, we would like to calculate gap energy shifted in a
linear acene family using topological indices.
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3.2 RR,RM2, and RRR topological indices in linear acenes

At first, we compute RR,RM2, and RRR topological indices for a linear acene family. To
establish a relation for each index based on the number of rings, these indices’ values are
then measured in some elements of linear acenes. Also, ∆Eg value is measured for the chosen
members using the Hartree–Fock theory (HFT). Finally, we try to present an appropriate model
to predict ∆Eg value in this family of elements, especially those with a large number of rings.
According to Figure 1, we have the following theorem:

Figure 1: Simple molecular graph of linear acenes (C4n+2H2n+4).

Theorem 3.1. If n represents the count of rings within a linear acene family, then the RR(G)
index can be expressed as:

RR (G) = (3 + 4
√

6) (n− 1) + 12. (30)

Proof. Consider the simple graph in Figure 1, which can be divided into three regions:

I. The set of all vertices and edges that are situated on or above the surface with a value of
L equal to 1 is referred to as G1.

Figure 2: G1 comprises of all vertices and edges positioned on or above the surface L = 1.

II. The collection of vertices and edges that are positioned on surface L = 2 or above it is
referred to as G2.

Figure 3: G2 refers to all the vertices and edges that are positioned on surface L = 2 or below
it.

III. The collection of all vertices and edges lying in between the L = 1 and L = 2 surfaces is
represented as G3.
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Figure 4: G3 encompasses all the vertices and edges that lie within the surfaces defined by
L = 1 and L = 2.

Based on Figure 2 and Equation (1), for G1 we have:

RR(G1) =

k−1∑
m=1

√
d1,md1,m+1, (31)

where di,j is degree of vertices Xi,j .
For the first and the last sentences in Equation (31), which are related to X1,1 and X1,k

vertices, we have: √
d1,1d1,2 =

√
d1,k−1d1,k = 2. (32)

And for m 6= 1 and m 6= k − 1, we have:√
d1,md1,m+1 =

√
6. (33)

Therefore, based on Equations (32) and (33), Equation (31) is obtained as follows:

RR(G1) = 2 +

k−2∑
m=2

√
6 + 2. (34)

And since k = 2n+ 1,

RR (G1) = 4 +
√

6 [(k − 2)− 1] = 4 + 2
√

6 (n− 1). (35)

The same conclusion is applicable to G2 as shown in Figure 3:

RR (G2) = 4 + 2
√

6(n− 1). (36)

However, for G3, based on Figure 4, and since in X1,m all of m values are odd numbers, we
have:

RR(G3) =
√
d1,1d2,1 +

√
d1,kd2,k +

k−1
2∑

m=2

√
d1,md2,m. (37)

Since: √
d1,1d2,1 =

√
d1,kd2,k = 2, (38)

we have:

RR (G3) = 4 + 3[(
k − 1

2
)− 1] = 4 + 3 (n− 1) . (39)

And since:

RR (G) = RR (G1) +RR (G2) +RR (G3) , (40)

based on Equations (35), (36), (39), and (4), the proof is completed. �
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Theorem 3.2. If n represents the number of rings present in linear acenes, the value of the
RM2(G) index can be expressed as follows:

RM2 (G) = 12n− 6. (41)

Proof. Assume that the simple graph in Figure 1 can be applied to three regions of G1, G2,
and G3 as shown in Figures 2 to 4. In this case, the RM2 index with Equation (2) for G1 is as
follows:

RM2(G1) =

k−1∑
m=1

(d1,m − 1)(d1,m+1 − 1). (42)

Since

(d1,1 − 1) (d1,2 − 1) = (d1,k−1 − 1)(d1,k − 1) = 1. (43)

For m 6= 1, k − 1:

(d1,m − 1) (d1,m+1 − 1) = 2. (44)

We have:

RM2 (G1) = 1 + 1 +

k−2∑
m=2

2 = 2 + 2[(k − 2)− 1]. (45)

Since k = 2n+ 1, we have

RM2 (G1) = 2 + 4 (n− 1) . (46)

The same conclusion is applicable to the G2 region shown in Figure 3.

RM2 (G2) = RM2 (G1) = 2 + 4 (n− 1) . (47)

But for the G3 region, based on Figure 4, and since m in the X1,m equation includes odd
numbers, by separating the first and the last vertices, we get:

RM2 (G3) = (d1,1 − 1) (d2,1 − 1) + (d1,k − 1) (d2,k − 1) +

k−1
2∑

m=2

(d1,m − 1)(d2,m − 1). (48)

Then, we obtain:

RM2 (G3) = 1 + 1 + 4[(
k − 1

2
)− 1] = 2 + 4 (n− 1). (49)

Therefore, the proof of theorem is completed by Equations (46), (47), and (49).

RM2 (G) = RM2 (G1) +RM2 (G2) +RM2 (G3) = 12n− 6. (50)

�

Theorem 3.3. Let’s denote the total number of rings in linear acenes as n. In this context,
the RRR(G) index can be defined as follows:

RRR (G) = 6 + (n− 1) [2 + 4
√

2]. (51)
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Proof. Assume that simple graph in Figure 1 can be applied to three regions. Based on Figure 2
and Equation (3), for G1 area we will have:

RRR (G1) =

k−1∑
m=1

√
(d1,m − 1)(d1,m+1 − 1). (52)

For the first and the last sentence in Equation (52), which is related to X1,1 and X1,k vertices:√
(d1,1 − 1)(d1,2 − 1) =

√
(d1,k−1 − 1)(d1,k − 1) = 1, (53)

and for m 6= 1, k − 1, we have:√
(d1,m − 1)(d1,m+1 − 1) =

√
2. (54)

Therefore, by using Equations (53) and (54), we have:

RRR (G1) = 1 +

k−2∑
m=2

√
2 + 1. (55)

And since k = 2n+ 1, we have:

RRR (G1) = 2 +
√

2 [(k − 2)− 1] = 2 + 2
√

2 (n− 1) . (56)

The same conclusion applies to the G2 region, as shown in Figure 3.

RRR (G2) = 2 + (n− 1). (57)

But for G3, based on Figure 4, and since m in X1,m equation includes odd numbers, we have:

RRR (G3) =
√

(d1,1 − 1)(d2,1 − 1) +
√

(d1,k − 1)(d2,k − 1) +

k−1
2∑

m=2

√
(d1,m − 1)(d2,m − 1). (58)

Since √
(d1,1 − 1)(d2,1 − 1) =

√
(d1,k − 1)(d2,k − 1) = 1, (59)

and √
(d1,m − 1)(d2,m − 1) = 2, (60)

we have

RRR (G3) = 4 + 2[(
k − 1

2
) − 1] = 2 + 2 (n− 1) , (61)

and since we have

RRR (G) = RRR (G1) +RRR (G2) +RRR (G3) . (62)

Therefore, the proof is completed. �
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Table 1: RR(G), RRR(G), and RM2(G) indices and value in linear acenes using HF and quan-
tum perturbations theory.

n- acene RR Index RRR index RM2 index ∆Eg (eV)- HF ∆ (eV)
1- acene 12 6 6 0.00392 0.0029
2- acene 24.7979 13.6568 18 0.01625 0.02552
3- acene 37.5958 21.3136 30 0.03649 0.0497
4- acene 50.3937 28.9704 42 0.06129 0.0744
5- acene 63.1916 36.6272 54 0.08887 0.0993
6- acene 75.9895 44.1952 66 0.11823 0.1244
7- acene 88.7874 51.852 78 0.14854 0.1496
8- acene 101.5853 59.5088 90 0.17954 0.1748

4 Results and discussion
To obtain a model based on topological indices, nine elements of linear acenes are chosen and
computed. The topological indices are RR(G), RRR(G), and RM2(G), the results of which are
shown in Table 1. The last two columns of Table 1 show the calculated values of the elected
members of the linear acene family. These have been obtained using the HF method [25] and
the model developed by Equation (29).

Figure 5 shows gap energy changes in linear acenes based on RM2(G). As it shows, this
index predicts gap energy changes with high precision of (R2 = 0.9989).

∆Eg = 8× 10−6(RM2)2 + 13× 10−4(RM2)− 81× 10−4(eV). (63)

The following equation ∆Eg is obtained according to Figure 5:

Figure 5: Gap energy changes based on RM2(G) in linear acenes.

Gap energy changes for linear acenes were calculated based on RR(G) and RRR(G) indices,
and the results are shown in Figures 6 and 7.

Figures 6 and 7 indicate the success and precision (R2 = 0.9989 and R2 = 0.9988) of these
indices in predicting gap energy changes in linear acenes, as shown in the following equations:

∆Eg = 7× 10−6(RR)2 + 1.2× 10−3(RR)− 1.49× 10−2(eV), (64)
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Figure 6: Gap energy changes based on RR(G) in linear acenes.

Figure 7: Gap energy shifted based on RRR(G) in linear acenes.

∆Eg = 2× 10−5(RRR)2 + 2.2× 10−3(RRR)− 1.46× 10−2(eV). (65)

5 Conclusion
Gap energy shifted is computed using quantum perturbation theory and the HF method. Fur-
thermore, this article introduces three models that rely on topological indices to explain varia-
tions in the gap energy of acenes. These models are made for gap energy changes in this group
of elements based on three indices—RM2, RR, and RRR—which are denoted with Equations
(63), (64), and (65). In more complex acenes, as the number of carbon atoms increases, so does
the number of levels in the conduction and valence bonds. Consequently, the highest occu-
pied molecular orbital (HOMO) moves upwards, while the lowest unoccupied molecular orbital
(LUMO) moves downwards. Simultaneously, there is an increase in the electron cloud. This
means reduced energy gap by increasing the number of loops, so this is quite logical that the
gap energy changes were increased.
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Although these three models provide high accuracy of computational methods, the model
is most successful when based on the RM2 index.
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