The Schultz Index for Product Graphs

Document Type : Research Paper


Facultad de Matemáticas‎, ‎Universidad Autónoma de Guerrero‎, ‎Av‎. ‎Lázaro Cárdenas s/n‎, ‎Col‎. ‎La Haciendita‎. ‎Chilpancingo‎, ‎Guerrero, ‎México


Among the binary operations made with graphs‎, ‎the cartesian‎, ‎corona‎, ‎and lexicographic are three well-known products‎, ‎as well as the cartesian sum‎. ‎Topological indices are graph invariants used to describe graphs associated with molecules‎, ‎one of these is the Schultz index‎, ‎which can be obtained as‎ ‎ ‎∑ u≠v (deg u+ deg v) d(u,v), ‎where the sum runs over all pairs of distinct vertices of the graph‎. ‎In this paper‎, ‎we give explicit expressions for the Schultz index of cartesian and corona‎, ‎with alternative proofs to those given in the literature‎, ‎as well as for lexicographic product and the cartesian sum‎, ‎all of these formulas involve order and size of factors‎, ‎additionally‎, ‎the first three involve both Wiener and Schultz indices of factors‎, ‎corona and lexicographic also involve Zagreb index and the last one just Zagreb.‎ ‎


 1. V‎. ‎S‎. ‎Agnes, ‎Degree distance and Gutman index of corona product of graphs‎, ‎Trans. Comb.3 (4) (2015) 11-23.‎
2. A‎. ‎Alameri‎, ‎A‎. ‎Modabish and A‎. ‎Ayache‎, ‎New product operation on graphs and it’s properties‎,
Int. Math. Forum11 (8) (2016) 357-368.‎
3. A‎. ‎Arivalagan‎, ‎K‎. ‎Pattabiraman and V‎. ‎S‎. ‎A‎. ‎Subramanian‎, ‎Distance based graph invariants of graph operations‎,
Gen. Math. Notes 22 (2) (2014) 143-153.
4. M‎. ‎Aroziaraj and A‎. ‎J‎ . ‎Shalini‎, ‎Extended cut method for edge Wiener‎, ‎Schultz and Gutman indices with applications‎, MATCH Commun. Math. Comput. Chem.‎ ‎76 (2016) 233-250.‎
5. S‎. ‎Barik‎, ‎S‎. ‎Pati and B‎. ‎K‎. ‎Sarma‎, ‎The spectrum of the corona of two graphs‎, ‎
SIAM J. Discrete Math.21 (1) (2007) 47-56.‎
6. D‎. ‎Bonchev and D‎. ‎H‎. ‎Rouvray‎,
Chemical Graph Theory: Introduction and Fundamentals‎, ‎Abacus Press/Gordon & Breach Science Publishers‎, ‎1991.‎
7. J‎. ‎Cao‎, ‎U‎. ‎Ali‎, ‎M‎. ‎Javaid and C‎. ‎Huang‎, ‎Zagreb connection indices of molecular graphs based on operations‎, ‎
Complexity‎‎ 2020 (2020) 1-15.‎
8. W‎. ‎Carballosa‎, ‎A‎. ‎De La Cruz and J‎. ‎M‎. ‎Rodríguez‎, ‎Gromov hyperbolicity in lexicographic product graphs‎, ‎
Proc. Indian Acad. Sci. ‎(Math. Sci.)‎‎ 129 (5) (2019) 1-20.‎
9. A‎. ‎Graovac and T‎. ‎Pisanski‎, ‎On the Wiener index of a graph‎, ‎
J. Math. Chem.8 (1991) 53-62.‎
10. I‎. ‎Gutman‎, ‎Selected properties of the Schultz molecular topological index‎, ‎
J. Chem. Inf. Comput. Sci.34 (5) (1994) 1087-1089.‎
11. R‎. ‎Hammack‎, ‎W‎. ‎Imrich and S‎. ‎Klavžar‎, ‎
Handbook of Product Graphs‎, ‎CRC Press‎,‎ Boca Raton, FL, 2011.‎
12. F‎. ‎Harary, ‎
Graph Theory, Addison-Wesley‎, ‎Reading MA‎, Massachusetts, ‎1969.‎
13. H‎. ‎Hosoya‎. ‎Topological Index‎. ‎A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons‎, ‎
Bull. Chem. Soc. Jpn‎. 44 (9) (1971) 2332-2339.‎
14. R‎. ‎Khalid and N‎. ‎Idrees‎, ‎Wiener and hyper-Wiener index of Dutch windmill graphs‎,
U. P. B. Sci. Bull.‎‎ 80 (2018) 31-38.‎
15. S‎. ‎Klavžar‎, ‎A‎. ‎Rajapakse and I‎. ‎Gutman‎, ‎The Szeged and the Wiener index of graphs‎, ‎
Appl. Math. Lett.‎‎ 9 (5) (1996) 45-49.‎
16. D‎. ‎J‎. ‎Klein‎, ‎Z‎. ‎Mihalić‎, ‎D‎. ‎Plavšić and N‎. ‎Trinajstić‎, ‎Molecular topological index‎: ‎A relation with the Wiener index‎, ‎
J. Chem. Inf. Comput. Sci.32 (4) (1992) 304-305.‎
17. D‎. ‎Liu and X‎. ‎Zhu‎, ‎Coloring the cartesian sum of graphs‎, ‎
Discrete Math. 308 (24) (2008) 5928-5936.‎
18. P‎. ‎Paulraja and V‎. ‎ S‎. ‎Agnes‎, ‎Degree distance of product graphs‎, ‎
Discrete Math. Algorithms Appl. 1 (6) (2014) 1-19.‎
19. H‎. ‎P‎. ‎Schultz, ‎Topological organic chemistry‎. ‎1‎. ‎Graph theory and topological indices of alkanes‎, ‎
J. Chem. Inf. Comput. Sci.‎‎ 29 (3) (1989) 227-228.‎
20. N‎. ‎Trinajstić, ‎
Chemical Graph Theory‎, ‎CRC Press‎, Boca. Raton, FL,‎1992.‎
21. H‎. ‎Wiener‎, ‎Structural determination of paraffin boiling points‎, ‎
J. Am. Chem. Soc. 69 (1947) 17-20.‎
22. Z‎. ‎Yarahmadi and A‎. ‎R‎. ‎Ashrafi‎, ‎The Szeged‎, ‎vertex PI‎, ‎first and second Zagreb indices of corona product of graphs‎, ‎
Filomat‎‎ 26 (3) (2012) 467-472.