1. M. Aghel, A. Erfanian and A. R. Ashrafi, On the first and second Zagreb indices of quasi unicyclic graphs, Trans. Combin. 8 (2019) 29–38.
2. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., New York, 1976.
3. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
4. V. Andova, N. Cohen and R. Skrekovski, A note on Zagreb indices inequality for trees and unicyclic graphs, Ars Math. Contemp. 5 (2012) 73–76.
5. A. R. Ashrafi, T. Do ̆ lić and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010) 1571–1578.
6. G. Caporossi, P. Hansen and D. Vukičević, Compairing the Zagreb indices of cyclic graphs, Match Commun. Math. Comput. Chem. 63 (2010) 441–451.
7. K. C. Das and I. Gutman, Some properties of the second Zagreb index, Match Commun. Math. Comput. Chem. 52 (2004) 103–112.
8. K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph, Kragujevac J. Math. 25 (2003) 31–49.
9. K. C. Das, On comparing Zagreb indices of graphs, Match Commun. Math. Comput. Chem. 63 (2010) 433–440.
10. H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, Match Commun. Math. Comput. Chem. 57 (2007) 597–616.
11. I. Gutman and K. C. Das, The first Zagreb index 30 years after, Match Commun. Math. Comput. Chem. 50 (2004) 83–92.
12. P. Hansen and D. Vukičević, Comparing the Zagreb indices, Croat. Chem. Acta 80 (2007) 165–168.
13. B. Horoldagva and K. C. Das, On comparing Zagreb indices of graphs, Hacettepe J. Math. Stat. 41 (2012) 223–230.
14. S. N. Qiao, On the Zagreb index of quasi-tree graphs, Appl. Math. E-Notes 10 (2010) 147–150.