
 

Iranian J. Math. Chem. 12 (2) June (2021) 79 − 88 

 

 

Original Scientific Paper 
 

Upper and Lower Bounds for the First and Second 

Zagreb Indices of Quasi Bicyclic Graphs 
 
MAJID AGHEL

1
, AHMAD ERFANIAN

2,
 AND TAYEBEH DEHGHAN-ZADEH

3
 

 
1
Department of Pure Mathematics, Ferdowsi University of Mashhad, International 

Campus, P. O. Box 91779−48974, Mashhad, I. R. Iran  
2
Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic 

Structures‎, ‎Ferdowsi University of Mashhad‎, ‎Mashhad‎, I. R. ‎Iran 
3
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of 

Kashan, P. O. Box 87317−53153 Kashan, I. R. Iran 

 

ARTICLE INFO  ABSTRACT 

Article History: 

Received: 23 September 2019 

Accepted: 4 May 2021  

Published online: 30 June 2021 

Academic Editor: Ali Reza Ashrafi 

The aim of this paper is to give an upper and lower bounds for the 

first and second Zagreb indices of quasi bicyclic graphs. For a simple 

graph  , we denote       and      , as the sum of         

overall vertices   in   and the sum of              of all edges    

of  , respectively. The graph   is called quasi bicyclic graph if there 

exists a vertex        such that     is a connected bicyclic 

graph. The results mentioned in this paper, are mostly new or an 

important of result given by authors for quasi unicyclic graphs in [1]. 
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1. INTRODUCTION 

During the last decades a large number of numerical graph invariants (topological indices) 

have been defined and used for correlation analysis in theoretical chemistry and 

mathematical chemistry that is calculated based on the molecular graph of a chemical 

compound. Topological indices are numerical parameters of a graph which characterize its 
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topology and are usually graph invariant. The Hosoya index is the first topological index 

recognized in chemical graph theory. Other famous examples include the Wiener index, 

Randić’s molecular connectivity index, Balaban’s J index and Zagreb indices. 

In this paper, We review the important properties of the Zagreb group indices on 

quasi bicyclic graphs. The first and the second Zagreb indices are among the oldest 

topological indices defined in 1972 by Gutman and Trinajstić [3]. These numbers have 

been used to study the molecular complexity, chirality and some other chemical quantities. 

The first Zagreb index is defined as the sum of the squares of the degrees of the vertices, 

i.e.         ∑                and the second Zagreb index is the sum of              

overall edges    of  . This means that         ∑                       Das and 

Gutman provided some identities for Zagreb indices by which the authors obtained some 

bounds for the second Zagreb index and in [11], the author established some bound for the 

first Zagreb index. Qiao [14] gave sharp lower and upper bounds for the Zagreb group 

indices of   vertex quasi-tree graphs and the corresponding extremal graphs were 

characterized (see [4-10] and also [12-13] for more results). We continue this work for 

quasi unicyclic graphs in [1] and now is investigated quasi bicyclic graphs in this paper. 

Now, let us remind some graph theorical concepts here. The notations and 

terminalogy are standard and we refer to [2] and other authored papers on the indices 

related to mathematical chemistry for more details and proofs. 

An undirected graph in which each edge connects two different vertices and where 

no two edges connect the same pair of vertices is called a Simple graph. For a simple 

graph, an unordered pair of vertices   and   that specify a line joining these two nodes are 

said to form an edge and denote by    or      . Suppose   is a simple graph and      

and      denote the maximum and minimum degrees of vertices in  . For each       , 

the set of all neighbors of the vertex   is denoted by                       . 

The vetrex        is said to be pendant vertex if         and the edge         is 

said to be pendant edge if   or   to be pendant vertex. For a subset   of the vertex set 

    , let     be the subgraph of   obtained by deleting the vertices of   and the 

edges incident with them. Similarly, for a subset   of the edge set     ,     denotes 

the subgraph of   obtained by deleting the edges of     . If       and       , the 

subgraphs     and     will be simply written as     and     , respectively. 

For any two non-adjacent vertices   and   of  , we let      be the graph obtained from 

  by adding an edge   , and also for any two adjacent vertices   and   of  , we let 

     be the graph obtained from   by deleting an edge   . The cycle    for      is a 

path of   edges and   vertices where starting and ending at the same vertex. The wheel 

graph    for    , is a graph formed by connecting a single universal vertex   to all 

vertices of a cycle graph     . The complete graph    for      is a graph in which each 

pair   and   of vertices are adjacent. 
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A graph   of order   is called a bicyclic graph, if is connected and the number of 

edges of   is    . Let      be the set of all bicyclic graphs on vertices. If the graph   

has the property that     induces a bicyclic graph for a suitable vertex  , then   is 

called a quasi bicyclic graph. 

Let        be the bicyclic graph obtained from two vertex-disjoint cycles    and 

   by identifying vertices   of    and   of   (See Figure 1.) It is clear that the bicycle 

       with some pendant edges is quasi bicyclic graph.  

 

                                             
 

Figure 1: The graph       . 

 

Throughout this paper, the set of all bicyclic and quasi bicyclic graphs with   

vertices will be denoted by      and      , respectively. The purpose of this paper is to 

prove the following two main theorems that we will prove them in future sections. 

 

Theorem A. Let         and    . Then                   . The 

equality holds in right or left inequality if and only if        or       , respectively.  

 

Theorem B. Suppose that         for every    . Then                 

     . The equality holds in right inequality if and only if        and holds in left 

inequality if and only if        for    .  

 

2. PROOF OF THEOREMS A AND B  

We start by the following simple lemma which plays an important role in the proof of our 

main theorems. 

 

Lemma 2.1  Let   be an   vertex graph,         and        . Then,   

    1.                ,  

    2.                ,  

    3.                ,  

    4.                .  

Proof. Since the proof of the part (ii) is similar to the proof of the part (i) and the proof of 

(iv) is similar to the proof of (iii), it is enough to prove (i) and (iii). 
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        . By connecting the vertices   and  , we can see that          

                                                         

                      . Hence,               . 

 

        ,                 and                . Therefore,      

                                 ∑   
                        

 ∑   
                        ∑   

                      ∑   
             

                                     ∑   
            ∑   

           

 . As a consequence,               .  

This proves the lemma.                                                                                             □ 

In the following lemma, we give a class of graphs which are not quasi bicyclic.  

 

Lemma 2.2  Let   be an   vertex graph such that    . If the number of vertices of 

degree     is greater than  , then   is not a quasi bicyclic graph.  

 

Proof. Since         , when    , there are   distinct vertices                and    

such that                                     . It is clear that             

are adjacent to each other and so the subgraph of   induced by the above sex vertices is 

not quasi bicyclic, because the graph constructed from   by removing any of these six 

vertices has at least three cycles. Hence   can not be a quasi bicyclic graph.                                   

□ 

The following corollary is a direct consequence of Lemma 2.3.  

 

Corollary 2.3  If        , then   has at most three vertices of degree    .  

 

Lemma 2.4  Let        , for every     and         . Then   

    •              

    •            

Proof. Suppose that         and    . Since   is connected and is a bicycle, 

     . By our assumption,   has a suitable vertex   such that         . Thus, 

                     . Since           ,                   

        .  

If         has a pendant vertex, then       . Suppose   has no pendant 

vertex. Then        and for a suitable vertex  , we have            which 

implies that     has a vertex   of degree  . If   is adjacent to  , then the minimum 

degree of   can be at most  . Hence         , as desired.                                          □ 
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Lemma 2.5  Suppose that    be complete graph of order    . Then          for 

every    .  

  

Proof. Since the number of vertices of order     in complete graph    for     is 

more than 3, So    is not quasi bicyclic graph by Corollary 2.3.                                         □ 

 

We can obtain quasi bicyclic graphs without pendant vertex by     and     

  by Lemmas 2.3, 2.4, 2.5 and the fact that ∑                      . Therefore, each 

quasi bicyclic graph has one of the sequence of degrees of vertices      

           ⏟  
   

  or               ⏟  
   

 . 

Apply Lemmas 2.2 and 2.4 to find lower and upper bounds for the Zagreb indices 

of an arbitrary quasi bicycle graph. We first define a class      of   vertex quasi 

bicyclic graphs that plays an important role in our results. Let      be the set of all quasi 

bicyclic graphs with exactly   vertices that contains two vertices of degree    , one 

vetex of degree  , two vertices of degree   and the rest of vertices have degree   )see 

Figure 2(.  

 
Figure  2: The Graph Structure of a Member of     . 

 

Let us now state another class of quasi bicyclic graphs. Define      to be a quasi 

bicyclic graph that contains a cycle of length    , a cycle of length   and a pendant 

vertex that is attached to      )see Figure 3(.  

 
Figure  3: The Graph Structure of a Member of     . 

   

Now, we are ready to prove Theorems A and B.  
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Proof of Theorem A. Suppose         for every    , and   is a vertex of   such 

that           . We prove the theorem in two parts.  

Part 1. Right inequality: In this part, we have the following two cases:   

 

 G has no pendant vertex. By Lemma 2.4,        or  . Suppose      

 . We proceed by induction on  . If    , then it is clear that       

         (see Figure 4). 

 

 
 

Figure  4: The Zagreb Indices of Members on QB(5). 

  

We now assume that     and the result holds for    . If          

 , then we construct a graph    from   by adding some new edges to   to 

obtain           . By Lemma 2.1,             . Let   be a 

vertex adjacent to   and   such that         ,            and 

            . If we remove the vertex  , then by inductive 

assumption     
               . Therefore,     

       
  

   =                 ]                          ]   = 2 + 

2[(n – 1) + deg(v)].  On the other hand, we have  

           
       

                     ] 

                                         ] 

                                         

If       , then   has one of the sequence of degrees of vertices   or   

that zagreb index for them is         or        . Therefore, 

                   as required. 

 

   has a pendant vertex  . In this case, we can see that   is not adjacent to 

other pendant vertices of  . Again we obtain a new graph    by connecting 

all pendant vertices to   and Lemma 2.4,             . So, the proof is 

completed by using the previous case.  
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For the second part, we first note that if       , then 

      ∑                      . Conversely, if       ∑                

      , then we can see that the vertex   has degree    . This shows that we have 

two vertices   and   of degree    . Moreover, we have only three distinct vertices 

            such that   and   are adjacent to  ,   and   and                 

             If for instance   is adjacent to a vertex different from   and   then we will 

have a new cycle which is a contradiction. Thus                    For the rest of 

vertices as              , we should have            Otherwise, a new cycle will be 

appeared. Hence       . 

 

Part 2. Left inequality: Similar to the right part, two cases can be happened as 

follows:   

   has no pendant vertex. We can proceed by induction on  . Let    , 

then we have several kinds of quasi bicyclic graphs depicted in Figure 4. 

For the graph depicted on this figure, we can see that      , as desired. 

Suppose that     and the result holds for    . Proceed by induction, 

we assume that                 and                . If we 

remove all edges    ,    , ...,     and obtain the new graph   , then we 

can see that                                        

                 
    

    If we remove the vertex   from   , then by induction hypothesis, 

                  . Therefore,     
       

        

                      ]               Hence,     
       

                     , as desired. 

 

 G has pendant vertex   adjacent to  , where             . By 

removing the vertex   we achieved a new graph     that by induction 

hypothesis satisfies     
            . So,           

       

                      ]                           + 

    and the proof is completed.  

 

To prove the second part, we first assume that       . It is clear that       

∑                     . Conversely one can easily see that the minimum value of 

      occurs when           , Since            ,   must be adjacent to only 

one vertex of     , and      conneceted to    with a common edge, and the result 

follows.                                                                                                                                  □ 
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As similar as the method for giving lower and upper bounds of       in Theorem 

A, we can state it for       in Theorem B. 

Proof of Theorem B. Suppose        , when    , and   is a vertex in   such that 

          . We prove the theorem in two parts. For the right hand side of the 

inequality, we may consider two cases as follows:   

1. G has no pendant vertex. By Lemma 2.4,              . Suppose        and 

apply induction on  . If    , then equality holds, see Figure 4. We assume that 

    and the result holds for    . If           , then there are vertices in 

the graph that are not adjacent to  . We connect these vertices to   and obtain a 

new graph   . By Lemma 2.2,             . Let   be a vertex adjacent to   

and   such that         ,            and               . 

Suppose   and   have neighbors             and          , respectively. If we 

remove the vertex  , then by induction assumption,                 

         . Therefore,     
       

               ∑     
      

          ∑     
             ∑     

                 ∑     
               .  

According to the above description and the fact that ∑                      , 

we have     
       

                               

                    If       , then   has one of the sequence of 

degrees of vertices   or   that second zagreb index for them is less than     

      as required. 

 

2.   has a pendant vertex. If   has a pendant vertex   then we can see that   is not 

adjacent to other pendant vertices and hence we can obtain a new graph    by 

connecting all pendant vertices to  . Again by Lemma 2.2,              and 

the proof can be completed by using the Case 1.  

 

To prove the second part, it's clear that if       , then 

      ∑                                   Conversely, if       

∑                                  , then we can see that the vertex   should be of 

degree    . Thus, we have two vertices   and   of degree    . 

Moreover, we have only three distinct vertices             such that   and   

are adjacent to  ,   and   and                              If for instance   is 

adjacent to a vertex different from  ,   and   then we will have a new cycle which is a 

contradiction. Thus                  , and            For the rest of vertices as 

             , we should have            Otherwise, a new cycle will be appeared. 

Hence       . 

For the left hand side inequality, two cases can be arised as follows:   
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   1.    has no pendant vertex. Again our proof can be proceed by induction on  . 

If    , then we have five kinds of quasi bicyclic graphs as in Figure 4. For this graphs 

we have       and the inequality holds, as desired. We now assume that     and the 

result holds for    . To prove the result for  , let                 and 

               . If we remove the edges    ,    ,  ,     then we obtain a new 

graph    such that                                         

                 
    If we remove the vertex   from   , then by induction 

hypothesis, we have                   . Therefore,    
       

     

  ∑     
                               ∑     

                 that all 

vertices   ,      , are adjacent to    and          . Hence the result follows. 

 

   2.    has pendant vertex   adjacent to  , where              . By 

removing vertex   we achieve a new graph     such that     
             . 

Therefore, 

           
      ∑     

                     

            ∑     
                , 

that all vertices   ,      , are adjacent to  . Since the degree of at least one vertex    

is greater than or equal to  ,     which completes the proof of this case.  

 

To prove the second part, we note that if        for    , then       

∑                             . Conversely, one can easily see that the minimum 

value of       occurs when           . Since            ,   has to must be 

adjacent to only one vertex of     , and      conneceted to    with a common edge, and 

the result follows. Finally, we may suggest to the reader to continue this kind of 

computations for quasi  -cyclic graphs where    .                                                          □ 
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