1. T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (10) (1975) 985-992.
2. L. S. Blockdna W. A. Coppel, Dynamics in One Dimension, SpringerMonographs in Mathematics, Springer, Berlin, 1992.
3. R. L. Devaney, An Introduction to Chaotics Dynamical Systems, Benjamin/Cummings, Menlo Park, CA, 1986.
4. J. R. Chazottes and B. Fernandez (Eds.),Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, Lecture Notes in Physics, vol. 671,Springer-Verlag Berlin Heidelberg, 2005.
5. J. L. Garca Guiraoand M. Lampart, Chaos of a coupled lattice systemrelated with Belusov-Zhabotinskii reaction, J. Math. Chem. 48 (2010)159-164.
6. K. Kaneko, Globally coupled chaos violates law of large numbers,Phys. Rev. Lett. 65 (1990)13911394.
7. X. X. Wuand P. Y. Zhu, Li-Yorke chaos in a coupled lattice systemrelated with Belusov-Zhabotinskii reaction, J. Math. Chem. 50 (2012)1304-1308.
8. B. Schweizer and J. Smtal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math.Soc. 344 (1994) 737-754.
9. P. Oprochaand P. Wilczyński, Shift spaces and distributional chaos, Chaos Solitons Fractals 31(2007)347-355.
10. J. Smtal and M. Stefánková, Distributional chaos for triangular maps, Chaos Solitons Fractals 21(2004) 1125-1128.
11. R. Pikula, On some notions of chaos in dimension zero, Colloq. Math. 107 (2007)167-177.
12. X. X. Wu and P. Y. Zhu, A minimal DC1 system, Topol. Appl. 159 (2012) 150-152.
13. X. X. Wuand P. Y. Zhu, The principal measure and distributional (p,q)-chaos of a coupled lattice system related with Belusov-Zhabotinskii reaction, J. Math. Chem. 50 (2012) 2439-2445.
14. J. L. Garca Guiraodna M. Lampart, Positive entropy of a coupled lattice system related withBelusov-Zhabotinskii reaction, J. Math. Chem. 48 (2010)66-71.
15. D. L. Yuan dna J. C. Xiong, Densities of trajectory approximation time sets (in Chinese), Sci. Sin. Math. 40 (11) (2010) 1097-1114.
16. B. Schweizer, A. Sklar dna J. Smtal, Distributional (and other) chaos and its measurement, Real Anal. Exch. 21(2001) 495-524.
17. M. Kohmoto dna Y. Oono, Discrete model of chemical turbulence, Phys.Rev. Lett. 55(1985)2927-2931.
18. J. L. Hudson, M. Hartand D. Marinko, An experimental study of multiplexpeak periodic and nonperiodic oscilations in the Belusov-Zhabotinskii reaction, J. Chem. Phys. 71(1979)1601-1606.
19. K. Hirakawa, Y. Oono and H. Yamakazi, Experimental study on chemicalturbulence II, J. Phys. Soc. Jap. 46 (1979)721-728.
20. J. L. Hudson, K. R. Grazianiand R. A. Schmitz, Experimental evidence ofchaotic states in the Belusov-Zhabotinskii reaction, J. Chem. Phys. 67(1977)3040-3044.
21. G. Chen and S. T. Liu, On spatial periodic orbits and spatial chaos, Int. J. Bifur. Chaos 13 (2003)935-941.
22. L. Alsedaà, J. Llibre dnaM. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, 2nd ed., Advanced Series in Nonlinear Dynamics 5, World Scientific, Singapore, 1993.
23. R. Li, A note on the three versions of distributionalchaos, Commun. Nonlinear Sci. Numer. Simulat. 16(2011)1993-1997.
24. R. Li, Comment on“A note on the principalmeasure and distributional (p, q)-chaos of a coupled lattice system related with Belusov-Zhabotinskii reaction”, J. Math. Chem. 52 (2014) 775-780.
25. S. Roth, Dynamics on dendrites with closed endpoint sets,Nonlinear Analysis 195 (2020) 111745.
26. Z. Roth, Distributional chaos and dendrites, Int. J. Bifurcation Chaos 28 (14) (2018) 1850178.
27. J. L. G. Guirao and M. Lampart, Relations betweendistributional, Li-Yorke and chaos, Chaos, Solitons Fractals 28 (2006) 788-792.
28. F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs, J. Reine Angew. Math. 547(2002) 51-68.
29. T. Downarowicz, Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc. 142 (2014) 137-149.
30. J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986) 269-282.
31. G. L. Forti, L. Paganonidna J. Smítal, Dynamics of homeomorphismson minimal sets generated by triangular mappings, Bull. Austral.Math. Soc. 59 (1999) 1-20
32. N. Franzová and J. Smítal, Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc. 112 (1991)1083-1086.