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In this paper, the chaotic properties of the following Belusov-

Zhabotinskii's reaction model is explored:  

   
             

   
 

 
        

         
   , 

where   is discrete time index,   is lattice side index with system size 

 ,         is coupling constant and   is a continuous map 

on         . This kind of system is a generalization of the 

chemical reaction model which was presented by García Guirao and 

Lampart in [Chaos of a coupled lattice system related with the 

Belusov–Zhabotinskii reaction, J. Math. Chem. 48 (2010) 159164] 

and stated by Kaneko in [Globally coupled chaos violates the law of 

large numbers but not the central-limit theorem, Phys. Rev. Lett. 65 

(1990) 13911394], and it is closely related to the Belusov-

Zhabotinskii's reaction. In particular, it is shown that for any 

coupling constant          , any           and     , the 

topological entropy of this system is greater than or equal to 

          , and that this system is Li-Yorke chaotic and 

distributionally chaotic, where the map   is defined by       
                  and                         
Moreover, we also show that for any     with        ,     

and    , this system is distributionally      -chaotic. 
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1. INTRODUCTION  

A topological dynamical system (t.d.s. for short)       is always assumed to be a compact 

metric space   together with a continuous map      . Since the term of chaos 

was first introduced by Li and Yorke in [1], topological dynamical systems were highly 

considered in the literature [2−3] because they can model many phenomena from 

biology, physics, chemistry and social sciences. We know that Lattice Dynamical Systems 

or 1d Spatiotemporal Discrete Systems are generalizations of classical discrete dynamical 

systems. These kinds of systems have recently appeared as an important subject for 

investigation. In [4] we can find the importance of these type of systems. To understand 

when one of these type of systems has complicated dynamical properties or not by the 

study of one topological dynamical property is an open problem [5]. By using the concept 

of chaos, Guirao and Lampart characterized the dynamical complexity of a class of coupled 

lattice systems posed by Kaneko in [6] which is related to the Belusov-Zhabotinskii's 

reaction [5] and proved that such systems are Devaney chaotic and Li-Yorke chaotic for 

zero coupling constant. Also, they declared that these systems may be more complicated 

for non-zero coupling constants. Consequently, to further study the chaotic properties of the 

systems with non-zero coupling constants are very difficult. Recently, in [7] Wu and 

Zhu established that the systems with non-zero coupling constant         are Li-Yorke 

chaotic and have positive entropy. 

Distributional chaos defined by Schweizer and Smtal [8], is very interesting and 

important. This is because that it is equivalent to positive topological entropy and some 

other kinds of chaos if the state spaces are restricted to the closed intervals [8] or 

hyperbolic symbolic spaces [9]. However, we know that this equivalence does not transfer 

to higher dimensions. For example, positive topological entropy does not imply 

distributional chaos for triangular maps [10] (such a case can happen for zero-dimensional 

spaces [11]). It is known from [12] that there is a minimal system which is distributional 

chaotic. More recently, Wu and Zhu deduced that for           and any pair       

 , the following coupled lattice system with non-zero coupling constant         is 

distributionally      -chaotic [13]: 

   
             

   
 

 
        

         
                            

where   is discrete time index,   is lattice side index with system size   (that is,   

         ),         is coupling constant. Motivated by [14], we will further 

explore the chaotic properties of the following chemical models which are related to 

Belusov-Zhabotinskii's reaction: 

   
             

   
 

 
        

         
                            

where   is discrete time index,   is lattice side index with system size  ,         is 

coupling constant and   is a continuous map on         . In particular, we obtain 
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that for any coupling constant          , any           and     , the topological 

entropy of the above chemical systems are greater than or equal to           , and that 

such systems are Li-Yorke chaotic and distributionally chaotic, where the map   is defined 

by                          and                         At the same 

time, it is obtained that for any     with        ,     and    , this system is 

distributionally      -chaotic. 

 

2. PRELIMINARIES 

In this article, we always assume that   denotes a compact metric space with metric  , and 

that       denotes a t.d.s.. 

A pair           is called a Li-Yorke pair of system       if the following 

are fulfilled: 

(1)       
   

                  

(2)       
   

                  

A subset     is said to be a LY-scrambled set for   if the set   has at least two 

points and any two distinct points in   form a Li-Yorke pair of      . A system       or 

a map       is said to be Li-Yorke chaotic if it has an uncountable LY-scrambled set. 

Let       be a t.d.s.. For any         and any          , the distributional 

function    
               is defined by  

    
     

 

 
                                     

where    is the cardinality of the set  . Set  

                
   

   
     

and  

    
             

   
   

      

 For any           with    , a t.d.s.       is distributionally      -chaotic if 

there exist an uncountable set     and     such that            and    
       

  for any           with     and any        . Clearly,       is distributionally 

chaotic if it is distributionally      -chaotic, s ee [13, 15]. 

Let   be the diameter of the space  . That is,                    . The 

principal measure       of a t.d.s.       is defined by  

          
     

 

 
∫  

  

 
    

                  , 

see [16]. It is known from [16] that  

       
 

 
 ∑   

   
 

 


    

              
, 

where   is the tent map defined by               for any        . 
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The state space of the chemical system (1) or (3) is the set  

                                                   

where     is the dimension of the range space of the map of state   ,     is the 

dimension of the lattice and the norm on   is defined by  

      (∑                     
 )

 

 , 

where (     is the length of the vector   ) [5]. 

We will discuss and study the following chemical system related to the model stated 

by Kaneko in [6] and given by García Guirao and Lampart in [5] which is closely related to 

the Belusov-Zhabotinskii reaction [5−6, 17−20]:  

   
             

   
 

 
        

         
                            

where   is discrete time index,   is lattice side index with system size  ,         

is coupling constant, and   is a continuous map on         . 

Generally speaking, for the system (1) or (3), one of the following three 

assumptions is needed: 

1)   
      

 , 

2)   
    

   , 

3)   
      

   ,  

standardly, the first assumption is needed. 

 

3.  MAIN RESULTS 

The system (1) was investigated by many authors, mostly experimentally or semi-

analytically than analytically. Chen and Liu [21] first obtained analytic 

results. Especially, they established that this system is Li-Yorke chaotic. In [5] Guirao 

and Lampart gave an new alternative and simpler proof of this result. 

Let   be the product metric on the product space    defined by  

                              (∑   
          

 )
 

 , 

for any                             , where         . 

Define a map                 by                             

where               
 

 
               

   . It is clear that the chemical system (3) 

is equivalent to the above dynamical system       , and that the chemical system (3) is 

different from the chemical system (1) when    . In [5] Guirao and Lampart claimed that 

for non-zero couplings constants, this chemical system (3) is more complicated. 

Inspired by [14] we have the following theorem.  
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Theorem 3.1. For any          , the topological entropy of the chemical system (3) is 

greater than or equal to            for any           and     .  

Proof. Write  

                                          

As   is a continuous map on   ,             
      

  is a subsystem of the dynamical 

system       . Therefore, one has that             (   
      

). 

For any fixed          , we let                 for any         . Then 

we obtain that               for any           and                   for 

any          . Define a map                 by    ⃖    for any  ⃖            

       . It is easily verified that   is a homeomorphism. Clearly, one gets that  

      
      

  ⃖   (            ⃖                  ), 

and  

  (            ⃖                  )                          ⃖   

So, one obtains that      
      

           . This shows that             
      

  is 

topologically conjugate to the subsystem                 . Therefore, one has that  

     (   
      

)                . 

By Corollary 4.3.13 from [22] we have  

     (   
      

)                                                  

Consequently, one gets that                                                                              □ 

Theorem 3.2. For any          , the chemical system (3) is chaotic in the sense of Li-

Yorke for any           and     .  

Proof. By Theorem 3.1, we know that if           and     , then the topological 

entropy of the chemical system (3) is positive. By Proposition 2 in [13], this system (3) is 

chaotic in the sense of Li-Yorke for any           and any          .                      □ 

Theorem 3.3. For any          , the chemical system (3) is distributionally chaotic for 

any           and     .  

Proof. From the proof of Theorem 3.1 one can see that for any           and any 

         , the system             
      

  is conjugated with the system 

                . As         is distributionally chaotic, by Lemmas 2.1 and 2.2 in [23] 

         is distributionally chaotic for any          . By the definition and Theorem 2 in 
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[10] and its proof, the system             
      

  is distributionally chaotic for any   

        and any            As             
      

  is a subsystem of the system 

      , the system        is distributionally chaotic for any           and any   

       .                                                                                                                                □ 

 

Theorem 3.4. For any     with        , the chemical system (3) is distributionally 

     -chaotic for     and    .  

Proof. By Proposition 3 in [13],         is distributionally      -chaotic for any     with 

       . From the proof of Theorem 3.1 we know that for    , the subsystem 

            
      

  of the system        is topologically conjugated to system 

               . By Proposition 1.6 in [15], the system             
      

  is distributionally 

     -chaotic for any     with        . This means that the system        

is distributionally      -chaotic for     and any     with        .                      □ 

Theorem 3.5. Let       be continuous and         be fixed. Then the principal 

measure of the chemical system (3) is greater than or equal to            for any 

       .  

Proof. Clearly, for any fixed         and any    , one has 

that    ⃖        ⃖         , where  ⃖               and                 for any 

   . For any       with     and any      √  , one has that  

  
 ⃖  ⃖ 
             

   

 

 
                          ⃖      ⃖          

  
 

√ 
      

By a similar argument, one has that  

   ⃖  ⃖           
 

√ 
     

for any       with    . This means that  

          
     

 

√ 
∫  

  

 
( 

 ⃖  ⃖ 
         ⃖  ⃖      )                       □ 

 

Remark 3.1. Theorem 3.5 completely solves Problem 3.2 given by Li in [24].  

Remark 3.2. Roth [25] solved a problem regarding Li-Yorke and distributional chaos and 

gave the following question: Is there a DC3 chaotic subshift which is not Li-Yorke chaotic? 

Many definitions of chaos have appeared in the last decades and with them the question if 

they are equivalent in some more specific spaces. In [26] Roth's focus was distributional 

chaos, first defined in 1994 and later subdivided into three major types (and even more 
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subtypes). These versions of chaos are equivalent on a closed interval, but distinct in more 

complicated spaces. As dendrites have much in common with the interval, she 

explored whether or not she could distinguish these kinds of chaos already 

on dendrites. She also briefly looked at the correlation with other types of chaos. The 

relations between concepts of distributional, Li-Yorke and   chaos were discussed by 

many authors. In [27] Guirao and Lampart summarized all known connections between 

these three different types of chaos and fulfilled the results for general compact metric 

spaces by the construction of a selfmap over a compact perfect set such that this map is   

chaotic, not distributionally chaotic and has zero topological entropy. Among other 

notions, Li-Yorke chaos and topological entropy belong to basic and widely used notions in 

the theory of discrete dynamical systems. The question of their mutual relationship is thus 

very natural. Since 2002, from [28] we know that for continuous maps on compact metric 

spaces positive topological entropy implies Li-Yorke chaos. Analogical implication 

between positive topological entropy and distributional chaos of the second type has been 

obtained by Downarowicz [29]. It is noted that, in both cases, the converse implications do 

not hold, see [30] and [31], respectively. So, a natural question arises, whether there exists 

a property connected to positiveness of topological entropy is equivalent to the occurrence 

of Li-Yorke chaos. This question was solved in [32] by Franzová and Smítal for maps of 

the compact interval.  

Remark 3.3. For some related well-known relations between 2-points-chaos and infinite-

points-chaos for all applied notions of chaos, we refer the reader to [26, 27]. From the 

proofs of our results we can easily see that while increasing the system's dimension all the 

results in this paper are true.  

Problem 3.1. Let     with         be given and    . Is the system (3) 

distributionally      -chaotic for any      ?  

Problem 3.2. Is the principal measure of a system or a map invariant under topological 

conjugacy?  
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