Let $G=(V,E)$ be a finite simple graph. The Sombor index $SO(G)$ of $G$ is defined as $\sum_{uv\in E(G)}\sqrt{d_u^2+d_v^2}$, where $d_u$ is the degree of vertex $u$ in $G$. In this paper, we study this index for certain graphs and we examine the effects on $SO(G)$ when $G$ is modified by operations on vertex and edge of $G$. Also we present bounds for the Sombor index of join and corona product of two graphs.
S. Alikhani, S. Jahari, M. Mehryar and R. Hasni, Counting the number of dominating sets of cactus chains, Opt. Adv. Mat. – Rapid Comm. 8, No. 9-10, (2014) 955-960.
M. Chellali, Bounds on the 2-domination number in cactus graphs, Opuscula Math. 2 (2006) 5−12.
R. Cruz, I. Gutman and J. Rada, Sombor index of chemical graphs, Appl. Math. Comput.399 (2021) 126018.
K. C. Das, A. S. Cevik, I. N. Cangul and Y. Shang, On Sombor index, Symmetry13 (2021) #140.
H. Deng, Z. Tang and R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem. DOI: 10.1002/qua.26622.
I. Gutman, Geometric approach to degree based topological indices, MATCH Commun. Math. Comput. Chem.86 (1) (2021) 11−16.
F. Harary and B. Uhlenbeck, On the number of Husimi trees, I, Proc. Nat. Acad. Sci.39 (1953) 315−322.
K. Husimi, Note on Mayer’s theory of cluster integrals, J. Chem. Phys. 18 (1950) 682−684.
S. Majstorović, T. Došlić and A. Klobučar, -domination on hexagonal cactus chains, Kragujevac J. Math.36, No 2 (2012) 335−347.
Y. Mao, Nordhaus-Gaddum Type Results in Chemical Graph Theory. In Bounds in Chemical Graph Theory–Advances; Gutman, I., Furtula, B., Das, K.C., Milovanović, E., Milovanovixcx, I., Eds.; University of Kragujevac and Faculty of Science Kragujevac: Kragujevac, Serbia, 2017; pp. 3−127.
R. J. Riddell, Contributions to the Theory of Condensation, Ph.D. Thesis, University of Michigan, Ann Arbor, 1951.
A. Sadeghieh, N. Ghanbari and S. Alikhani, Computation of Gutman index of some cactus chains, Elect. J. Graph Theory Appl.6 (1) (2018), 138−151.
Y. Shang, Bounds of distance Estrada index of graphs, Ars Comb. 128 (2016) 287−294.
Z. Wang, Y. Mao, Y. Li and B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math. Comput, DOI: https://doi.org/10.1007/s12190-021-01516-x.
H. Wiener, Structural determination of the Paraffin boiling points, J. Am. Chem. Soc., 69 (1947) 17−20.
Ghanbari, N., & Alikhani, S. (2021). Sombor index of certain graphs. Iranian Journal of Mathematical Chemistry, 12(1), 27-37. doi: 10.22052/ijmc.2021.242106.1547
MLA
Nima Ghanbari; Saeid Alikhani. "Sombor index of certain graphs", Iranian Journal of Mathematical Chemistry, 12, 1, 2021, 27-37. doi: 10.22052/ijmc.2021.242106.1547
HARVARD
Ghanbari, N., Alikhani, S. (2021). 'Sombor index of certain graphs', Iranian Journal of Mathematical Chemistry, 12(1), pp. 27-37. doi: 10.22052/ijmc.2021.242106.1547
VANCOUVER
Ghanbari, N., Alikhani, S. Sombor index of certain graphs. Iranian Journal of Mathematical Chemistry, 2021; 12(1): 27-37. doi: 10.22052/ijmc.2021.242106.1547