Let G be a simple graph of order N, the concept of resol-vent energy of graph G; i.e. ER(G)=\sum_{i=1}^N (N - λi)^{-1} was established in Resolvent Energy of Graphs, MATCH commun. Math. comput. chem., 75 (2016), 279-290. In this paper we study the set of resol-vents energies of graph G which it is called pseudospectrum energy of graph PS(G). For large value resolvent energy of graph ER(G) and real eigenvalues, we establish a number of properties of PS(G): For complex eigenvalues, some examples of PS(G) are given.
A. B. Antonevich, Linear Functional Equations, Operator approach. Birkhäuser, 1996.
A. B. Antonevich and Ali A. Shukur, The Estimations of the Resolvent of the Bounded Operators, LAP LAMBERT Academic Publishing (in Russian) (2017) 132 pages.
A. B. Antonevich and A. A. Shukur, On powers of operator generated by rotation, J. Anal. Appl. 16 (1) (2018) 57-67.
G. J. Murphy, c*-algebra and operator theory, Academic Press, Inc. 1990.
O. Nevanlinna, Resolvent conditions and powers of operators, Studia Math. 145 (2001) 113-134.
D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Metallic phase with long range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984) 1951-1954.
S. M. Shah, On the singularities of class of function on the unit circle, Bull. Amer. Math. Soc. Publ. 52 (1946) 1053-1056.
L. N. Trefethen and M. Embree, Spectra and Pseudospectra, The Behavior of Non-Normal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.
T. G. Wright. EigTool, Software available at http://www.comlab.ox.ac.uk/ pseudospectra /eigtool, 2002.
I. Gutman, B. Furtula, E. Zogić and E. Glogić, Resolvent of energy of graphs, MATCH Commun. Math. Comput. Chem.75 (2016) 279-290.
I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz. 103 (1978) 1-22.
Shelash, H., & Shukur, A. (2020). Pseudospectrum Energy of Graphs. Iranian Journal of Mathematical Chemistry, 11(2), 83-93. doi: 10.22052/ijmc.2020.221182.1488
MLA
Hahder Shelash; Ali Shukur. "Pseudospectrum Energy of Graphs". Iranian Journal of Mathematical Chemistry, 11, 2, 2020, 83-93. doi: 10.22052/ijmc.2020.221182.1488
HARVARD
Shelash, H., Shukur, A. (2020). 'Pseudospectrum Energy of Graphs', Iranian Journal of Mathematical Chemistry, 11(2), pp. 83-93. doi: 10.22052/ijmc.2020.221182.1488
VANCOUVER
Shelash, H., Shukur, A. Pseudospectrum Energy of Graphs. Iranian Journal of Mathematical Chemistry, 2020; 11(2): 83-93. doi: 10.22052/ijmc.2020.221182.1488