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1. INTRODUCTION

The resolvent matrix of a given matrix M of finite (or infinite) order is defined as
R,(M):= (ul — M)~ where u is a complex variable and I is the unit matrix. The matrix
R, (M) has many applications in different areas, as well, operator algebra [4], spectral
analysis [1] and singularities [7]. We refer the interested readers to consult papers [2,3,5],
for more details on this topic. Gutman et al. in [10], investigated the applications of
resolvent matrix in graph theory and introduced the so-called "resolvent energy of
graphs”. In the following, we consider the graph G of order N with vertex set V(G) =
{Vy,...,vn} and adjacency matrix A = (A;(G)), where

1 if viandv;are adjacent

A:(G) =
i(6) {0 otherwise
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The set of eigenvalues of A(G) is said to be the spectrum of G and the energy is the
sum of absolute values of them, i.e. E = E(G) = XN, |4;|. Moreover, the kth spectral
moment of a graph G is given by the following formula:

My = Mi(6) = T, (A" (1)
with M, = N, M; =0, M, = 2m, and M;, = 0 for all odd values of k if and only if G is
bipartite, see [17] for details. Since lvan Gutman established the phenomena of a spectrum-
based graph invariant in 1978 [11]; many authors studied it and a number of graph energies
have been introduced according to adjacency matrices [12,13,14,15]. The resolvent matrix

of A(G) is defined as R, (A(G)) = (ul — A(G))~" and its eigenvalues are
1

m, i = 1,2,...,N. (2)
In [10], the resolvent energy of G was defined as
1
ER = ER(G) = X |5 | ©)

where G is a graph of order N, u =N and A4,4,, ...,Ay are the eigenvalues. The
relationship between (1) and (3) was given in [10] by
ER = ER(G) =~
The resolvent energy of graph of order N is outside the spectra as well, outside kth
spectral moment, i.e. R,(A(G)) exists for all complex values p which does not coincides
with an eigenvalues of A(G) and it is easy to check that the right-hand side of (3), is always
positive-valued. For large resolvent energy value, it is natural to ask about more
information may hidden there. From analysis point of view, to understand more about an
object represented by a matrix, we have to analyze not only the eigenvalues and
spectrum, but also the pseudospectrum. In language of graph theory we define the
pseudospectrum energy of graphs as:

My(G)
Nk

Definition 1.1 Let A(G) be the adjacency matrix of graph G of order N with real
eigenvalues 44,4,, ..., A4y and & be a positive integer. The pseudospectrum energy of G is
the following set:

1 — .
PE =PE(G) = {3, |m| >et j=12,..} 4)

Obviously, the set (4) is located between the eigenvalues of A(G) and R, (A(G))
shown in (2). The phenomena of pseudospectrum have a number of applications in
diffident objects: dynamical systems, hydrodynamic stability, Markov chains and non-
Hermitian quantum mechanics. We refer to an interesting research work by Trefethen and
Embree [8] which gave a wide studies and applications to the mentioned concept. In
Section 2, we will focus on simple graphs, that is graphs without directed, multiple, or
weighted edges, and without self-loops and investigate their pseudospectrum energy of
such graphs when the eigenvalues are real and the adjacency matrix is normal, i.e.
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A(G)AT(G) = AT(G)A(G). In Section 3, we will give some examples of pseudospectrum
energy of directed and multidirected graphs which the adjacency matrices are non-
normal, i.e. A(G)AT (G) # AT (G)A(G) and the eigenvalues are complex numbers.

2. BAsSIC PROPERTIES OF PSEUDOSPECTRUM ENERGY OF GRAPHS
Theorem 2.1 For any graph G of order N, M, (G) < PE(G).

Proof. Let0 <j <j+ 1and A, = gj;1 — €. Then,
) (W —AG) ' <A, ()

which implies that Y, N < Ag, where 44, 1,, ..., Ay are the eigenvalues. By Theorem 2

in [10], for |4;/N]| < 1, we have

v = v 20 i Q)F <A (6)
The Inequality (6) means that the pesudospectrum energy graph set contains the set of all
eigenvalues of A(G) and hence M, (G) c PE(G). n

By removing an edge e from a graph G, we will have another graph, denoted by
G — e, which is subgraph of G.

Corollary 2.1. PE(G — e) € PE(G).

Proof. The proof follows from Corollary 3 in [10] and from fact that the set of eigenvalues
of G — e is less then the set of eigenvalues of G. [

It is well known that the spectra of complete graph Ky of order N and K, the
edgeless graph; are {N — 1,—1, ...,—1} and {0,0, ...,0}, respectively [11,16]. In [10], it was
obtained that for any graph G of order N different from K and K, we have

ER(Ky) < ER(G) < ER(Ky),
and
1 < ER(G) < vy, (7
2N

where yy = T

Corollary 2.2. Let G be a graph of order N and different from Ky and K. Then
2

Al’i_r){)noPE(G) = j=123,...
Proof. Its easy to check that PE(G) = (0,1) if and only if G = Ky and PE(G) = (1, Nz—fl)
if and only if G = K. From (7), we can put
= < PE(G) <™, (8)
€j €j
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where yy = % and j = 1,2,3, ... Now, by taking the limit to the right-hand side of (8), we
have
. o1 YN ~ 3 -
Al]l_r)rgoPE(G) = 1\1/1_1}30 o j =123, ...
|

In [10, Observation 15], it was observed that among connected unicyclic graphs of
order N, N > 4, the cyclic Cy has the smallest and graph Cy second-smallest resolvent
energy, respectively. While the graphs X and Xy (N = 5), have respectively, maximum
and second-maximum resolvent energy, see Figure 1. Now, it is easy to check that
PE(Cy) € PE(Cy) and PE(Xy) © PE(X}).

Y
f—‘- o
£y
K-""/ I.\”—‘./‘

Ch (%

Xn
Figurel. Graphs Cy, Cy, Xy and Xy.

3. COUNTEREXAMPLES OF PSEUDOSPECTRUM ENERGY GRAPHS OF NON-
NORMAL ADJACENCY MATRICES

In this section, we show some examples of graphs which the adjacency matrices are non-
normal and the eigenvalues are complex numbers. Obviously, the computation of
pseudospectrum energy of graphs in this case will be more complicated. By using
MATLAB platform "EigTool" [9], we show the pseudospectrum energy of graphs around
the spectra in a complex Banach space X. So, we rewrite the definition of the
pseudospectrum energy of graphs as
PE =PE(A(G)) ={u€C: Il (W —(AG) " I>¢", €>0,j=12,..}

where |I. ]l is the norm. For more details about pseudospectrum in complex Banach space
see [8].

In the next examples, we consider directed and multidirected graphs and 2-norm
which can be defined by |l x ll,= (X |x;|*)z for x € X.
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Example 3.1. Let G(V, E) be a non-simple graph with the following scheme (Figure.2):
a

N

e b

\]

d c
Figure 2. Graph G(V,E).

The adjacency matrix of G(V, E) is non-normal which is given by:
ra b ¢ d

A(GWV,E)) =

QO T Q
SO Rr O OO
SO R Or
SR O OO
o OO
SR OO RrRr®

The eigenvalues of A(G(E,V)) are: 4; = 1.6,4,3 = —0.8 + 1.04i,1, 5 = 0 and the
energy is
E(A(G(E,V))) = 3.2 + 2.08i.
In Figures 3 and 4, we show the computation of pesudospectrum energy of G(V, E)
outside the spectrum-based invariant for ¢ = — 2.5,-2.25, —2,—-1.75,—-1.5,-1.25,—1,
0.75,0.5,0.25 and iteration n = 78:

225

-25

Figure 3. Pseudospectrum energy of A(G W, E)).
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log,, ,(resolvent norm)

Figure 4. 3D pseudospectrum energy of A(G(V, E)).

Example 3.2. Let us consider the following Multidigraph M (V, E) as in Figure 5:

2 6

Figure 5. The graph M(V, E).

The adjacency matrix of multidigraph G containing n vertices, has been defined in
[17] as the n X n matrix A(G) = [a;;], whose ij-th entry a;; is equal to the number of
directed edges originating from the vertex i and ending at the vertex j. Thus, the adjacency
matrix of the graph M (V, E) is non-normal and can be given by:

1234567

10102000

20020000

33002210

Am=140000000]
50000001

60010000

(7000000 0l

The eigenvalues of Ay, are: 1, ,  — 1+ 1.4id3 = 2,4, 567 = 0 and the energy is
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E(M) =~ 4 + 2.8i.
In Figures 6 and 7, we show the computation of pesudospectrum energy of the
Multidigraph M outside the spectrum-based invariant for ¢ = — 2.25,-2,—-1.75,—1.5,
—1.25,-1,0.75,0.5,0.25 and iteration n = 100 as:

) 0.5

0.75

1.75

log 1 U(resolvent norm)

1 -2 32 Real

Figure 7. 3D Pseudospectrum energy of the graph of A4,,.

Conjecture 3.1. Throughout this paper, we observed that may only digraphs (except cycle
digraphs) and multigraphs have non-normal adjacency matrix.
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4. OPEN QUESTION

In particular, normal matrices are less interested in calculating the pseudospectrum
phenomena in Banach spaces but the next example of normal adjacency matrix shows a
special case:

Example 4.1. Let us consider the monad graph. The monad graph G is a discrete
dynamical system contains (I, f,G), where I' is a finite set and f:I' > I" is a map
scheming every vertices of elements of the corresponding I with its image by directed
connected edge. For more details about monad graphs we refer to [18]. In particular, we
consider the following system: I' = Zg with addition operation and f, (x) = x + 1, for all
x € Zs. The monad graph of (Zs, f,) is shown in Figure 7:

0

4/ \1
\3~—2/

Figure 7. Graph of (Zs, f.).

Now, the adjacency matrix of A(Zs, f,) is given by:

£ 0 1 2 3 4]
001000
10010 0
A =15 6 0 0 1 of
30000 1
41000 0]

Note that the adjacency matrix of A(Zs, f,) is normal but the eigenvalues are
complex numbers. The eigenvalues of A(Zs, f,) are: A;, = —0.8090 + 0.5878i, A3, =
0.3090 + 0.9511i, Az = 1 + i and the energy is

E(A(Zs, f,)) =~ 3.2 + 3.8i.

In Figures 9 and 10, we show the computation of the pesudospectrum energy of
graph with adjacency matrix A(Zs, f,) outside the spectrum-based invariant for & =
0.1,-0.1,-0.3, — 0.5,-0.7,-0.9, —1.1,—1.3,—1.5 and iteration n = 78:
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Figure 9. Pseudospectrum energy of a graph with adjacency matrix A(Zs, f.).

Iogm(resolvent norm)

Figure 10. 3D pseudospectrum energy of graph.

Obviously, the pesudospectrum energy of graph constructed by (Zs, ;) in example
4.1 is related to quasicrystallography which discovered by Nobel laureate Dan Shechtman
in 1982, see [6]. This observation lead us to ask about the explanation of the relationship
between pesudospectrum energy of graph of system (Zs, f,) and quasicrystallography as an
open question.

5. CONCLUSION

Eigenvalues are one of most talented instrument of mathematics in applied sciences. The
set of all eigenvalues is the spectrum of a given matrix and it is a nonempty set while the
resolvent set is outside the spectrum. Significant information has been provided by
analyzing the eigenvalues for 100 yeas. Moreover, the limitation of eigenvalue analysis was
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determined in the second half of the twentieth century by several mathematicians,
engineers and others, than non-normal matrices caused new evaluation to understanding the
behavior of matrices and in this connection elaborated the notion of the pseudospectrum. In
this paper, we introduced the pseudospectrum energy of graph and established a number of
its properties. As additional results, by using MATLAB programming platform, we
computed the pesudospectrum energy of two graphs represented by non-normal adjacency
matrices.
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