On Ev-degree and Ve-degree Topological Indices

Document Type : Research Paper


1 Faculty of Science, Selçuk University, Konya, Turkey

2 Faculty of Education, Yuzuncu Yil University, Van, Turkey


Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we define the ve-degree and ev-degree Narumi–Katayama indices, investigate the predicting power of these novel indices and extremal graphs with respect to these novel topological indices. Also we give some basic mathematical properties of ev-degree and ve-degree NarumiKatayama and Zagreb indices.


Main Subjects

1. M. Chellali, T.W. Haynes, S.T. Hedetniemi, T.M. Lewis, On ve-degrees and evdegrees in graphs, Discrete Math. 340 (2017) 31−38.
2. S. Ediz, Predicting some physicochemical properties of octane isomers: A topological approach using ev-degree and ve-degree Zagreb indices, Int. J. Syst. Sci. Appl. Math. 2 (2017), 87−92.
3. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535−538.
4. B. Horoldagva, K. Das, T. Selenge, Complete characterization of graphs for direct comparing Zagreb indices, Discrete Appl. Math. 215 (2016) 146−154.
5. A. Ali, Z. Raza, A. Bhatti, A note on the augmented Zagreb index of cacti with fixed number of vertices and cycles, Kuwait J. Sci. 43 (2016) 11−17.
6. S. Ediz, Reduced second Zagreb index of bicyclic graphs with pendent vertices, Le Mathematiche 71 (2016) 135−147.
7. M. Randić, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609−6615.
8. R. K. Kincaid, S. J. Kunkler, M. D. Lamar, D. J. Phillips, Algorithms and complexity results for findings graphs with extremal Randić index, Networks 67 (2016) 338−347.
9. A. Banerjee, R. Mehatari, An eigenvalue localization theorem for stochastic matrices and its application to Randić matrices, Linear Algebra Appl. 505 (2016) 85−96.
10. R. Gu, F. Huang, X. Li, Skew Randić matrix and skew Randić energy, Trans. Comb. 5 (2016) 1−14.
11. B. Furtula, I. Gutman, A forgotten topological index, J Math. Chem. 53 (2015) 1184−1190.
12. N. De, S. M. Abu Nayeem, Computing the F-index of nanostar dendrimers, Pacific Sci. Rev. A: Nat. Sci. Eng. 18 (2016) 14−21.
13. W. Gao, M. K. Siddiqui, M. Imran, M. K. Jamil, M. R. Farahani, Forgotten topological index of chemical structure in drugs, Saudi Pharm. J. 24 (2016) 258−264.
14. H. Narumi, M. Katayama, Simple topological index. a newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ. 16 (1984) 209−214.
15. I. Gutman, M. Ghorbani, Some properties of the Narumi-Katayama index, Appl. Math. Lett. 25 (2012) 1435−1438.
16. D. J. Klein, V. R. Rosenfeld, The degree–product index of Narumi and Katayama, MATCH Commun. Math. Comput. Chem. 64 (2010) 607−618.
17. D. J. Klein, V. R. Rosenfeld, The Narumi–Katayama degree–product index and the degree–product polynomial, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors—Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010, pp. 79−90.
18. R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley– VCH, Weinheim, 2009, p. 868.
19. A. Zolfi, A. R. Ashrafi, Extremal properties of Narumi-Katayama index of chemical trees, Kragujevac J. Sci. 35 (2013), 71−76.
20. K. C. Das, N. Akgüneş, M. Togan, A. Yurttaş, İ. N. Cangül, A. S. Çevik, On the first Zagreb index and multiplicative Zagreb coindices of graphs, An. St. Univ. Ovidius Constanta-Seria Matematica 24 (2016), 153−176.
21. M. Eliasi, I. Gutman, A. Iranmanesh, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012) 217−230.
22. B. Basavanagoud, S. Patil, Multiplicative Zagreb indices and co-indices of some derived graphs, Opuscula Math. 36 (2016), 287−299.