The Wiener index W(G) of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of eccentricities. Further we extend these results to the self-centered graphs.
RAMANE, H. S., GANAGI, A. B., & WALIKAR, H. B. (2013). Wiener Index of Graphs in Terms of Eccentricities. Iranian Journal of Mathematical Chemistry, 4(2), 239-248. doi: 10.22052/ijmc.2013.5299
MLA
H. S. RAMANE; A. B. GANAGI; H. B. WALIKAR. "Wiener Index of Graphs in Terms of Eccentricities", Iranian Journal of Mathematical Chemistry, 4, 2, 2013, 239-248. doi: 10.22052/ijmc.2013.5299
HARVARD
RAMANE, H. S., GANAGI, A. B., WALIKAR, H. B. (2013). 'Wiener Index of Graphs in Terms of Eccentricities', Iranian Journal of Mathematical Chemistry, 4(2), pp. 239-248. doi: 10.22052/ijmc.2013.5299
CHICAGO
H. S. RAMANE , A. B. GANAGI and H. B. WALIKAR, "Wiener Index of Graphs in Terms of Eccentricities," Iranian Journal of Mathematical Chemistry, 4 2 (2013): 239-248, doi: 10.22052/ijmc.2013.5299
VANCOUVER
RAMANE, H. S., GANAGI, A. B., WALIKAR, H. B. Wiener Index of Graphs in Terms of Eccentricities. Iranian Journal of Mathematical Chemistry, 2013; 4(2): 239-248. doi: 10.22052/ijmc.2013.5299