Let G be a simple connected graph. The first and second Zagreb indices have been introduced as vV(G) (v)2 M1(G) degG and M2(G) uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G) (degG(u) degG In this paper, the HyperZagreb index of the Cartesian product, composition, join and disjunction of graphs are computed.
SHIRDEL, G. H. , REZAPOUR, H. and SAYADI, A. M. (2013). The Hyper-Zagreb Index of Graph Operations. Iranian Journal of Mathematical Chemistry, 4(2), 213-220. doi: 10.22052/ijmc.2013.5294
MLA
SHIRDEL, G. H., , REZAPOUR, H. , and SAYADI, A. M.. "The Hyper-Zagreb Index of Graph Operations", Iranian Journal of Mathematical Chemistry, 4, 2, 2013, 213-220. doi: 10.22052/ijmc.2013.5294
HARVARD
SHIRDEL, G. H., REZAPOUR, H., SAYADI, A. M. (2013). 'The Hyper-Zagreb Index of Graph Operations', Iranian Journal of Mathematical Chemistry, 4(2), pp. 213-220. doi: 10.22052/ijmc.2013.5294
CHICAGO
G. H. SHIRDEL , H. REZAPOUR and A. M. SAYADI, "The Hyper-Zagreb Index of Graph Operations," Iranian Journal of Mathematical Chemistry, 4 2 (2013): 213-220, doi: 10.22052/ijmc.2013.5294
VANCOUVER
SHIRDEL, G. H., REZAPOUR, H., SAYADI, A. M. The Hyper-Zagreb Index of Graph Operations. Iranian Journal of Mathematical Chemistry, 2013; 4(2): 213-220. doi: 10.22052/ijmc.2013.5294