Let G be a simple connected graph. The first and second Zagreb indices have been introduced as vV(G) (v)2 M1(G) degG and M2(G) uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G) (degG(u) degG In this paper, the HyperZagreb index of the Cartesian product, composition, join and disjunction of graphs are computed.
SHIRDEL, G., REZAPOUR, H., & SAYADI, A. (2013). The Hyper-Zagreb Index of Graph Operations. Iranian Journal of Mathematical Chemistry, 4(2), 213-220. doi: 10.22052/ijmc.2013.5294
MLA
G. H. SHIRDEL; H. REZAPOUR; A. M. SAYADI. "The Hyper-Zagreb Index of Graph Operations". Iranian Journal of Mathematical Chemistry, 4, 2, 2013, 213-220. doi: 10.22052/ijmc.2013.5294
HARVARD
SHIRDEL, G., REZAPOUR, H., SAYADI, A. (2013). 'The Hyper-Zagreb Index of Graph Operations', Iranian Journal of Mathematical Chemistry, 4(2), pp. 213-220. doi: 10.22052/ijmc.2013.5294
VANCOUVER
SHIRDEL, G., REZAPOUR, H., SAYADI, A. The Hyper-Zagreb Index of Graph Operations. Iranian Journal of Mathematical Chemistry, 2013; 4(2): 213-220. doi: 10.22052/ijmc.2013.5294