In this paper, we introduce the new class of implicit L-stable generalized hybrid methods for the numerical solution of first order initial value problems. We generalize the hybrid methods with utilize ynv directly in the right hand side of classical hybrid methods. The numerical experimentation showed that our method is considerably more efficient compared to well known methods used for the numerical solution of stiff first order initial value problems.
SHOKRI, A. and SHOKRI, A. A. (2013). Implicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems. Iranian Journal of Mathematical Chemistry, 4(2), 201-212. doi: 10.22052/ijmc.2013.5293
MLA
SHOKRI, A. , and SHOKRI, A. A. . "Implicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems", Iranian Journal of Mathematical Chemistry, 4, 2, 2013, 201-212. doi: 10.22052/ijmc.2013.5293
HARVARD
SHOKRI, A., SHOKRI, A. A. (2013). 'Implicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems', Iranian Journal of Mathematical Chemistry, 4(2), pp. 201-212. doi: 10.22052/ijmc.2013.5293
CHICAGO
A. SHOKRI and A. A. SHOKRI, "Implicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems," Iranian Journal of Mathematical Chemistry, 4 2 (2013): 201-212, doi: 10.22052/ijmc.2013.5293
VANCOUVER
SHOKRI, A., SHOKRI, A. A. Implicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems. Iranian Journal of Mathematical Chemistry, 2013; 4(2): 201-212. doi: 10.22052/ijmc.2013.5293