Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
WU, Y. , WEI, F. and JIA, Z. (2013). The Generalized Wiener Polarity Index of some Graph Operations. Iranian Journal of Mathematical Chemistry, 4(2), 177-183. doi: 10.22052/ijmc.2013.5291
MLA
WU, Y. , , WEI, F. , and JIA, Z. . "The Generalized Wiener Polarity Index of some Graph Operations", Iranian Journal of Mathematical Chemistry, 4, 2, 2013, 177-183. doi: 10.22052/ijmc.2013.5291
HARVARD
WU, Y., WEI, F., JIA, Z. (2013). 'The Generalized Wiener Polarity Index of some Graph Operations', Iranian Journal of Mathematical Chemistry, 4(2), pp. 177-183. doi: 10.22052/ijmc.2013.5291
CHICAGO
Y. WU , F. WEI and Z. JIA, "The Generalized Wiener Polarity Index of some Graph Operations," Iranian Journal of Mathematical Chemistry, 4 2 (2013): 177-183, doi: 10.22052/ijmc.2013.5291
VANCOUVER
WU, Y., WEI, F., JIA, Z. The Generalized Wiener Polarity Index of some Graph Operations. Iranian Journal of Mathematical Chemistry, 2013; 4(2): 177-183. doi: 10.22052/ijmc.2013.5291