The Wiener index is the sum of distances between all pairs of vertices in a connected graph. In this paper, explicit expressions for the expected value of the Wiener index of three types of random pentagonal chains (cf. Figure 1) are obtained.
YONG WANG, H. , QIN, J. and GUTMAN, I. (2013). Wiener Numbers of Random Pentagonal Chains. Iranian Journal of Mathematical Chemistry, 4(1), 59-76. doi: 10.22052/ijmc.2013.5282
MLA
YONG WANG, H. , , QIN, J. , and GUTMAN, I. . "Wiener Numbers of Random Pentagonal Chains", Iranian Journal of Mathematical Chemistry, 4, 1, 2013, 59-76. doi: 10.22052/ijmc.2013.5282
HARVARD
YONG WANG, H., QIN, J., GUTMAN, I. (2013). 'Wiener Numbers of Random Pentagonal Chains', Iranian Journal of Mathematical Chemistry, 4(1), pp. 59-76. doi: 10.22052/ijmc.2013.5282
CHICAGO
H. YONG WANG , J. QIN and I. GUTMAN, "Wiener Numbers of Random Pentagonal Chains," Iranian Journal of Mathematical Chemistry, 4 1 (2013): 59-76, doi: 10.22052/ijmc.2013.5282
VANCOUVER
YONG WANG, H., QIN, J., GUTMAN, I. Wiener Numbers of Random Pentagonal Chains. Iranian Journal of Mathematical Chemistry, 2013; 4(1): 59-76. doi: 10.22052/ijmc.2013.5282