Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most colours, which is for a fixed graph G , a polynomial in , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.
ALIKHANI, S. and IRANMANESH, M. A. (2012). Chromatic Polynomials of Some Nanostars. Iranian Journal of Mathematical Chemistry, 3(2), 127-135. doi: 10.22052/ijmc.2012.5232
MLA
ALIKHANI, S. , and IRANMANESH, M. A.. "Chromatic Polynomials of Some Nanostars", Iranian Journal of Mathematical Chemistry, 3, 2, 2012, 127-135. doi: 10.22052/ijmc.2012.5232
HARVARD
ALIKHANI, S., IRANMANESH, M. A. (2012). 'Chromatic Polynomials of Some Nanostars', Iranian Journal of Mathematical Chemistry, 3(2), pp. 127-135. doi: 10.22052/ijmc.2012.5232
CHICAGO
S. ALIKHANI and M. A. IRANMANESH, "Chromatic Polynomials of Some Nanostars," Iranian Journal of Mathematical Chemistry, 3 2 (2012): 127-135, doi: 10.22052/ijmc.2012.5232
VANCOUVER
ALIKHANI, S., IRANMANESH, M. A. Chromatic Polynomials of Some Nanostars. Iranian Journal of Mathematical Chemistry, 2012; 3(2): 127-135. doi: 10.22052/ijmc.2012.5232