Numerical Solution of Gas Solution in a Fluid‎: Fractional Derivative Model

Document Type : Research Paper


Department of Applied Mathematics, University of Kurdistan


‎A computational technique for solution of mathematical model of gas solution in a fluid is presented‎. ‎This model describes the change of mass of the gas volume due to diffusion through the contact surface‎. ‎An appropriate representation of the solution based on the M"{u}ntz polynomials reduces its numerical treatment to the solution of a linear system of algebraic equations‎. ‎Numerical examples are given and discussed to illustrate the effectiveness of the proposed approach‎.


Main Subjects

1. A. Ansari and M. Ahmadi Darani, On the generalized mass transfer with a chemical
reaction: Fractional derivative model, Iranian J. Math. Chem. 7 (2016) 77–88
2. Y. I. Babenko, Heat and Mass Transfer: The Method of Calculation for the Heat and
Diffusion Flows (in Russian), Khimiya, Leningrad, 1986.
3. Y. I. Babenko, The Method of Fractional Differentiation in Applied Problems of Heat
and Mass Transfer Theory (in Russian), NPO Professional Publ, St Petersburg, 2009.
4. D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus: Models and
Numerical Methods 2nd ed., World Scientific, Singapore, 2016.
5. P. Borwein, T. Erdélyi and J. Zhang, Müntz systems and orthogonal Müntz–Legendre
polynomials, Trans. Amer. Math. Soc.342 (1994) 523–542.
6. D. W. Brzeziński, Accuracy problems of numerical calculation of fractional order
derivatives and integrals applying the Riemann–Liouville/Caputo formulas, Appl.
Math. Nonlinear Sci. 1 (2016) 23–44.
7. M. Caputo, Linear models of dissipation whose Q is almost frequency independent –
II, Geophys. J. Roy. Astron. Soc. 13 (1967) 529–539.
8. A. S. Cvetković, G. V. Milovanović, The Mathematica package orthogonal
polynomials, Facta. Univ. Ser. Math. Inform. 19 (2004) 17–36.
9. K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin,
10. K. Diethelm and Y. Luchko, Numerical solution of linear multi–term initial value
problems of fractional order, J. Comput. Anal. Appl. 6 (2004) 243–263.
11. S. Esmaeili and G. V. Milovanović, Nonstandard Gauss–Lobatto quadrature
approximation to fractional derivatives, Fract. Calc. Appl. Anal. 17 (2014) 1075–1099.
12. S. Esmaeili, M. Shamsi and Y. Luchko, Numerical solution of fractional differential
equations with a collocation method based on Müntz polynomials, Comput. Math.
Appl. 62 (2011) 918–929.
13. B. A. Finlayson, The Method of Weighted Residuals and Variational Principles, with
Application in Fluid Mechanics, Heat and Mass Transfer, Academic Press, New York,
14. W. Gautschi, Orthogonal Polynomials in MATLAB: Exercises and Solutions, SIAM,
Philadelphia, 2016.
15. G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23
(1969) 221–230.
16. Y. Luchko and R. Gorenflo, An operational method for solving fractional differential
equations with the Caputo derivatives, Acta Math. Vietnam. 24 (1999) 207–233.
17. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction
to Mathematical Models, Imperial College Press, London, 2010.
18. G. V. Milovanović, Müntz orthogonal polynomials and their numerical evaluation, in:
W. Gautschi, G. H. Golub and G. Opfer (Eds.), Applications and Computation of
Orthogonal Polynomials, Birkhäuser, Basel 131 (1999) 179–194.
19. G. V. Milovanović and A. S. Cvetković, Special classes of orthogonal polynomials
and corresponding quadratures of Gaussian type, Math. Balkanica. 26 (2012) 169–184.
20. P. Mokhtary, F. Ghoreishi and H. M. Srivastava, The Müntz–Legendre Tau method for
fractional differential equations, Appl. Math. Model. 40 (2016) 671–684.
21. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of
Mathematical Functions, Cambridge University Press, Cambridge, 2010.
22. A. Pedas and E. Tamme, Spline collocation methods for linear multi–term fractional
differential equations, J. Comput. Appl. Math. 236 (2011) 167–176.
23. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA,
24. J. M. Prausnitz, R. N. Lichtenthaler and E. Gomes de Azevedo, Molecular
Thermodynamics of Fluid–Phase Equilibria, 3th ed., Prentice Hall, Englewood Cliffs,
25. L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM,
Philadelphia, PA, 2013.