Solving Time-fractional Chemical Engineering Equations by Modified Variational Iteration Method as Fixed Point Iteration Method

Document Type : Research Paper


1 Islamic Azad University, Gorgan

2 University of Mazandaran


The variational iteration method(VIM) was extended to find approximate solutions of
fractional chemical engineering equations. The Lagrange multipliers of the VIM were not identified explicitly. In this paper we improve the VIM by using concept of fixed point iteration method. Then this method was implemented for solving system of the time fractional chemical engineering equations. The obtained approximate solutions are compared with the numerical results in the literature to show the applicability, efficiency and accuracy of the method.


Main Subjects

1. D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and
Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World
Scientific, 2012.
2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional
differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science
B.V., Amsterdam, 2006.
3. V. Kiryakova, Generalized Fractional Calculus and Applications, Longman and
John Wiley, Harlow−New York, 1994.
4. F. Mainardi, An historical perspective on fractional calculus in linear
viscoelasticity, Frac. Calc. Appl. Anal. 15(4) (2012), 712−718.
5. A. B. Malinowska, D. F. M. Torres, Fractional calculus of variations for a
combined Caputo derivative, Frac. Calc. Appl. Anal. 14 (4) (2011), 523−538.
6. K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York
and London, 1974.
7. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
8. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives:
Theory and Applications, Gordon and Breach, Yverdon, 1993.
9. J. H. He, Variational iteration method some recent result and new interpretations,
J. Comput. Appl. Math. 207 (2007) 3−17.
10. H. Jafari, M. Zabihi, E. Salehpor, Application of variational iteration method for
modified Camassa−Holm and Degasperis−Procesi equations, Numer. Meth. Part.
D. E. 26 (5) (2010) 1033−1039.
11. H. Jafari, A. Kadem, D. Baleanu, T. Yilmaz, Solutions of the fractional Davey−
Stewartson equations with variational iteration method, Rom. Rep. Phys. 64 (2)
(2012) 337−346.
12. S. Momani, Z. Odibat, Numerical comparison of methods for solving linear
differential equations of fractional order, Chaos Soliton. Fract. 31 (2007)
13. A. M. Wazwaz, A comparison between the variational iteration method and
Adomian decomposition method, J. Comput. Appl. Math. 207 (2007) 129−136.
14. V. Daftardar−Gejji, H. Jafari, Adomian decomposition: A tool for solving a system
of fractional differential equations, J. Math. Anal. Appl. 2 (2005) 508−518.
15. S. Momani, N. Shawagfeh, Decomposition method for solving fractional Riccati
differential equations, Appl. Math. Comput. 182 (2006) 1083−1092.
16. H. Jafari, A comparison between the variational iteration method and the
successive approximations method, App. Math. Letters 32 (2014) 1−5.
17. A. S. Khuri, A. Sayfy, Variational iteration method: Green's functions and fixed
point iterations perspective, Appl. Math. Letters 32 (2014) 28−34.
18. K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional
Differential Equations, John Wiley and Sons, New York, 1993.
19. K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York,
20. M. Caputo, Linear models of dissipation whose Q is almost frequency
independent. Part II, J. Roy. Astr. Soc. (1967) 529−539.
21. M. Inokuti, H. Sekine, T. Mura, General use of the Lagrange multiplier in
nonlinear mathematical physics, in: S. Nemat-Nasser (Ed.), Variational Method in
Mechanics of Solids, Pergamon Press, Oxford, 1978, pp. 156−162.
22. D. D. Ganji, M. Nourollahi, E. Mohseni, Application of He's method to nonlinear
chemistry problems, Comp. Math. Appl. 54 (2007) 1122−1132.
23. N. Alam Khan, A. Ara, A. Mahmood, Approximate solution of time-fractional
chemical engineering equations: A comparative study, Int. J. Chem. Reactor Eng. 8
(2010) Article A19.