Computing Szeged Index of Graphs on Triples

Document Type : Research Paper


1 School of Mathematics, College of Science, University of Tehran

2 Department of Mathematics, Shahid Chamran University of Ahvaz


ABSTRACT Let ‎G=(V,E) ‎be a‎ ‎simple ‎connected ‎graph ‎with ‎vertex ‎set ‎V‎‎‎ ‎and ‎edge ‎set ‎‎‎E. ‎The Szeged index ‎of ‎‎G is defined by ‎ where ‎ respectively ‎ ‎ is the number of vertices of ‎G ‎closer to ‎u‎ (‎‎respectively v)‎ ‎‎than ‎‎‎v (‎‎respectively u‎).‎ ‎‎If ‎‎‎‎S ‎is a‎ ‎set ‎of ‎size‎ ‎ ‎ ‎let ‎‎V ‎be ‎the ‎set ‎of ‎all ‎subsets ‎of ‎‎S ‎of ‎size ‎3. ‎Then ‎we ‎define ‎three ‎‎types ‎of ‎intersection ‎graphs ‎with ‎vertex ‎set V. These graphs are denoted by ‎‎ ‎‎ and we will find their ‎Szeged ‎indices.‎


Main Subjects

  1. M. R. Darafsheh‎, Computation of topological indices of some graphs, Acta. ‎Appl. ‎Math. 110 (2010)‎ ‎1225–1235.
  2. J. D. Dixon ‎and ‎B. ‎Mortimer, Permutation Groups‎, Springer–Verley‎,‎ ‎NewYork, ‎1996‎‎‎‎‎‎‎.
  3. M. Ghorbani‎, ‎‎‎‎‎‎‎Computing the Wiener index of graphs on triples‎‎‎, ‎Creat‎. ‎Math‎. ‎Inform‎. 24 (2015) no.1 49–52
  4. I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cyclic, Graph Theory Notes NY. 27 (1994) 9–15.
  5. I. Gutman‎‎ ‎and ‎A. A. ‎Dobrynin,The Szeged index-asuccess story‎,‎‎ Graph Theory Notes‎ ‎NY‎.34 (1998) ‎37–44‎‎‎‎.‎
  6. H. Hosoya, Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons, Bull. Chem. Soc. Japan. 44 (1971) 2332–2339.
  7. P. V. Khadikar, N. V. Deshpande, P. P. Kale‎, A. Dobrinin, I. Gutman and G. Domotor, The Szeged index and analogy with the Wiener index‎, ‎J. Chem‎. ‎Inf. Comput. Sci‎.35 (1995)‎ ‎547–550‎.‎‎
  8. H. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69 (1947) 17–20.
  9. J. Zerovnik‎, Szeged index of symmetric graphs‎, ‎J. Chem. Inf. Comput. Sci‎‎. 39 (1999)‎ ‎77–80‎.