On the Forgotten Topological Index

Document Type : Research Paper

Authors

1 Department of Mathematics, Payame Noor University, Tehran, 19395 – 3697, I. R. Iran

2 Department of mathematics, Shahid Rajaee Teacher Training University

Abstract

The forgotten topological index is defined as sum of third power of degrees. In this paper, we compute some properties of forgotten index and then we determine it for some classes of product graphs.

Keywords

Main Subjects


1. K. C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH
Commun. Math. Comput. Chem. 52 (2004) 103–112.
2. T. Došslić, Vertex–weighted Wiener polynomials for composite graphs, Ars Math.
Contemp. 1 (2008) 66–80.
3. R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970)
322–324.
4. B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015)
1184–1190.
5. B. Furtula, I. Gutman, Ž. K. Vukićević ,G. Lekishvili and G. Popivoda, On an
old/new degree–based topological index, Bull. Acad. Serb. Sci. Arts (Cl. Sci. Math.
Natur.) 148 (2015) 19–31.
6. I. Gutman, An exceptional property of first Zagreb index, MATCH Commun. Math.
Comput. Chem. 72 (2014) 733–740.
7. I. Gutman, Edge decomposition of topological indices, Iranian. J. Math. Chem. 6
(2015) 103–108.
8. I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun.
Math. Comput. Chem. 50 (2004) 83–92.
9. I. Gutman, B. Furtula, Ž. Kovijanić Vukićević and G. Popivoda, On Zagreb indices
and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5–16.
10. I. Gutman, B. Ruščić, N. Trinajstić and C.F. Wilcox, Graph theory and molecular
orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.
11. A. Ilić and D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math.
Comput. Chem. 62 (2009) 681–687.
12. X. Li and H. Zhao, Trees with the first smallest and largest generalized topological
indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57–62.
13. X. Li and J. Zheng, A unified approach to the extremal trees for different indices,
MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208.
14. S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30
years after, Croat. Chem. Acta 76 (2003) 113–124.
15. G. Su, L. Xiong and L. Xu, The Nordhaus–Gaddum – type inequalities for the
Zagreb index and coindex of graphs, Appl. Math. Lett. 25 (2012) 1701 – 1707.
16. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH,
Weinheim, 2000.
17. H. Wiener, Structural determination of the paraffin boiling points, J. Amer. Chem.
Soc. 69 (1947) 17–20.
18. B. Zhou and N. Trinajstić, Some properties of the reformulated Zagreb index, J.
Math. Chem. 48 (2010) 714–719.