VDB-Hosoya Index of Hexagonal Chains

Document Type : Research Paper

Authors

Instituto de Matem\'{a}ticas‎, ‎Universidad de Antioquia‎, ‎Medell\'{\i}n‎, ‎Colombia

10.22052/ijmc.2025.257234.2036

Abstract

‎Our main interest in this paper is the study of the Hosoya index $Z\left(G;\varphi \right) $ of weighted graphs $\left( G;\varphi \right) $‎, ‎when $G$ is a hexagonal chain with weight function induced by a vertex-degree-based topological index $\varphi$‎. ‎Recall that a hexagonal chain is a special type of hexagonal systems‎, ‎natural graph representations of benzenoid hydrocarbons‎. ‎On the other hand‎, ‎vertex-degree based topological indices are (molecular) graph descriptors which play a significant role in chemical graph theory‎.
‎Concretely‎, ‎if $G$ is a hexagonal chain and $\varphi$ is a vertex-degree-based topological index‎, ‎we give a method to compute $Z\left(G;\varphi \right) $ in terms of products of namely four types of $4\times 4$ matrices associated to $\varphi$‎. ‎As a consequence‎, ‎under certain conditions on $\varphi$‎, ‎we show that the $\varphi$-weighted linear hexagonal chain attains the minimal value of the Hosoya index‎, ‎among all $\varphi$-weighted hexagonal chains‎.

Keywords

Main Subjects


[1] R. Cruz, I. Gutman and J. Rada, Hosoya index of VDB-weighted graphs, Discrete Appl. Math. 317 (2022) 18–25, https://doi.org/10.1016/j.dam.2022.03.031.
[2] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971) 2332–2339, https://doi.org/10.1246/bcsj.44.2332.
[3] R. Cruz, C. Marín and J. Rada, Computing the Hosoya index of catacondensed hexagonal systems, MATCH Commun. Math. Comput. Chem. 77 (2017) 749–764.
[4] I. Gutman and S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer-Verlag, Berlin, 1989.
[5] J. Rada, Extremal properties of hexagonal systems, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanovic and I. Milovanovic (Eds.). Bounds in Chemical Graph Theory-Mainstreams, Univ. Kragujevac, Kragujevac (2017) 239–286.
[6] V. R. Kulli, Graph indices, Handbook of Research on Advanced Applications of Graph Theory in Modern Society, Global, Hershey, 2020, 66–91.
[7] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH Verlag, Germany, 2009.
[8] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. total $\varphi$- electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538, https://doi.org/10.1016/0009-2614(72)85099-1.
[9] M. Randic, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615, https://doi.org/10.1021/ja00856a001.
[10] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566, https://doi.org/10.1016/j.aml.2011.09.059.
[11] D. Vukicevic and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–1376, https://doi.org/10.1007/s10910-009-9520-x.
[12] B. Zhou and N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252–1270, https://doi.org/10.1007/s10910-008-9515-z.
[13] E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849–855.
[14] B. Furtula, A. Graovac and D. Vukicevic, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370–380, https://doi.org/10.1007/s10910-010-9677-3.
[15] S. Wagner and I. Gutman, Maxima and minima of the Hosoya index and the Merrifield-Simmons index: a survey of results and techniques, Acta Appl. Math. 112 (2010) 323–346, https://doi.org/10.1007/s10440-010-9575-5.
[16] S. Wagner and H. Wang, Introduction to Chemical Graph Theory, CRC Press, Taylor- Francis Group, Boca Raton, London, New York, 2018.
[17] F. Movahedi, M. H. Akhbari and H. Kamarulhaili, On the Hosoya index of some families of graph, Math. Interdisc. Res. 6 (2021) 225–234, https://doi.org/10.22052/MIR.2021.240266.1238.
[18] M. S. Oz and I. N. Cangul, Computing the Hosoya and the Merrifield-Simmons indices of two special benzenoid systems, Iranian J. Math. Chem. 12 (2021) 161–174, https://doi.org/10.22052/IJMC.2021.243008.1580.
[19] H. Ren and F. Zhang, Double hexagonal chains with maximal Hosoya index and minimal Merrifield - Simmons index, J. Math. Chem. 42 (2007) 679–690, https://doi.org/10.1007/s10910-005-9024-2.
[20] W. C. Shiu, Extremal Hosoya index and Merrifield-Simmons index of hexagonal spiders, Discrete Appl. Math. 156 (2008) 2978–2985, https://doi.org/10.1016/j.dam.2008.01.008.