Chemical Hyperstructures for Neptunium‎, ‎Rubidium‎, ‎and Plutonium

Document Type : Research Paper

Authors

1 Mathematics Study Program, Universitas Negeri Jakarta, Jakarta, Indonesia

2 College of Interdisciplinary Studies, Zayed University, Abu Dhabi, United Arab Emirates

10.22052/ijmc.2024.255728.1929

Abstract

‎The notion of hyperstructures is a generalization of algebraic structures‎. ‎This notion was first introduced by Marty in 1934‎. ‎Hyperstructures have many applications‎, ‎such as in biology‎, ‎physics‎, ‎cryptography‎, ‎and chemistry‎. ‎This paper focuses on the application of hyperstructures in chemistry‎, ‎especially in chemical reactions‎. ‎In 2022‎, ‎Al-Tahan and Davvaz finalized the results of chemical hyperstructures for chemical elements that have four oxidation states‎. ‎Motivated by this research‎, ‎this paper aims to investigate algebraic hyperstructures in some elements that have five oxidation states‎, ‎that is‎, ‎neptunium‎, ‎rubidium‎, ‎and plutonium‎. ‎Furthermore‎, ‎the chemical interpretation of these chemical elements also is provided in this paper‎.

Keywords

Main Subjects


[1] F. Marty, Sur une generalization de la notion de group, In 8th Congress Math. Scandenaves, Stockholm. (1934), 45 – 49.
[2] B. Davvaz and V. Leoreanu-Fotea, Hypergroup Theory, World Scientific, 2022.
[3] B. Davvaz and T. Vougiouklis, A Walk Through Weak Hyperstructures Hv- Structures, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.
[4] A. Dehghan Nezhad, S. Moosavi Nejad, M. Nadjafikhah and B. Davvaz, A physical example of algebraic hyperstructures : Leptons, Indian. J. Phys. 86 (2012) 1027 – 1032, https://doi.org/10.1007/s12648-012-0151-x.
[5] B. Davvaz, A. Dehghan Nezhad and S. M. Moosavi Nejad , Algebraic hyperstructures of observable elementary particles including the higgs Boson, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 90 (2020) 169–176, https://doi.org/10.1007/s40010-018-0553-z.
[6] M. Al-Tahan and B. Davvaz, Algebraic hyperstructures associated to biological inheritance, Math. Biosci. 285 (2017) 112–118, https://doi.org/10.1016/j.mbs.2017.01.002.
[7] M. Al-Tahan and B. Davvaz, N-ary hyperstructures associated to the genotypes of F2-offspring, Int. J. Biomath. 10 (2017) #1750118, https://doi.org/10.1142/S1793524517501182.
[8] M. Al-Tahan and B. Davvaz, Fuzzy subsets of the phenotypes of F2-offspring, Ser. Math. Inform. 34 (2019) 709 – 727, https://doi.org/10.22190/FUMI1904709A.
[9] M. Al-Tahan and B. Davvaz, A new relationship between fuzzy sets and genetics, J. Classification 36 (2019) 494–512, https://doi.org/10.1007/s00357-018-9276-8.
[10] B. Davvaz, A. Dehghan Nezhad and A. Benvidi, Chemical hyperalgebra : dismutation reactions, MATCH Commun. Math. Comput. Chem. 67 (2012) 55 – 63.
[11] B. Davvaz, A. Dehghan Nezhad and M. Mazloum-Ardakani, Chemical hyperalgebra : redox reactions, MATCH Commun. Math. Comput. Chem. 71 (2014) 323 – 331.
[12] B. Davvaz, Weak Algebraic Hyperstructures as A Model for Interpretation of Chemical Reactions, Iranian J. Math. Chem. 7 (2016) 267 – 283, https://doi.org/10.22052/IJMC.2016.13975.
[13] K. M. Chun, Chemical hyperstructures of chemical reaction for Iron and Indium, J. Chung. Math. Soc. 27 (2014) 319 – 325, https://doi.org/ 10.14403/jcms.2014.27.2.319.
[14] K. M. Chun, Chemical hyperstructures of chemical reactions for Titanium, J. Chung. Math. Soc. 30 (2017) 459 – 466, https://doi.org/10.14403/jcms.2017.30.4.459.
[15] S. C. Chung, Chemical hyperstructrues for Vanadium, J. Chung. Math. Soc. 27 (2014) 309– 317, https://doi.org/10.14403/jcms.2014.27.2.309.
[16] M. Al-Tahan and B. Davvaz, Chemical hyperstructures for astatine, tellurium, and for bismuth, Bull. Comput. Appl. Math. 7 (2019) 9 – 25.
[17] M. Al-Tahan and B. Davvaz, Chemical hyperstructures for elements with four oxidation states, Iranian J. Math. Chem. 13 (2022) 85–97, https://doi.org/10.22052/IJMC.2022.246174.1615.
[18] S. C. Chung, K. M. Chun, N. J. Kim, S. Y. Jeong, H. Sim, J. Lee and H. Maeng, Chemical hyperalgebra for three oxidation states of elements, MATCH Commun. Math. Comput. Chem. 72 (2014) 389 – 402.
[19] M. Al-Tahan and B. Davvaz, Weak chemical hyperstructures associated to electrochemical cells, Iranian J. Math. Chem. 9 (2018) 65 – 75, https://doi.org/10.22052/IJMC.2017.88790.1294.
[20] D. Heidari, D. Mazaheri and B. Davvaz, Chemical salt reactions as algebraic hyperstructures, Iranian J. Math. Chem. 10 (2019) 93 – 102, https://doi.org/10.22052/IJMC.2018.114473.1339.
[21] S. C. Chung, Chemical hyperstructures for ozone depletion, J. Chungcheong Math. Soc. 32 (2019) 491 – 508.
[22] S. C. Chung and K. M. Chun, Chemical hyperstructures for stratospheric ozone depletion, J. Chungcheong Math. Soc. 33 (2020) 469 – 487, https://doi.org/10.14403/jcms.2020.33.4.469.
[23] M. Al-Tahan and B. Davvaz, On quasi-ordering hypergroups, ordered hyperstructures and their applications in genetics, Math. Interdisc. Res. 7 (2022) 1–19.
[24] T. Vougiouklis, Hv-groups defined on the same set, Discrete Math. 155 (1996) 259 – 265, https://doi.org/10.1016/0012-365X(94)00390-5.