[1] M. Nesterkina, L. Ognichenko, A. Shyrykalova, I. Kravchenko and V. Kuz’min, QSAR models for analgesic activity prediction of terpenes and their derivatives, Struct. Chem. 31 (2020) 947–954, https://doi.org/10.1007/s11224-019-01479-7.
[2] A. M. Bello-Ramírez, J. Buendía-Orozco and A. A. Nava-Ocampo, A QSAR analysis to explain the analgesic properties of Aconitum alkaloids, Fundam. Clin. Pharmacol. 17 (2003) 575–580, https://doi.org/10.1046/j.1472-8206.2003.00189.x
[3] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
[4] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20, http://dx.doi.org/10.1021/ja01193a005.
[5] I. Ghlichloo and V. Gerriets, Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), StatPearls Publishing: Treasure Island, FL, USA, 2023, Available online: https://www.ncbi.nlm.nih.gov/books/NBK547742/
[6] A. Holdgate and T. Pollock, Systematic review of the relative efficacy of non-steroidal antiinflammatory drugs and opioids in the treatment of acute renal colic, BMJ 328 (2004) #1401,
https://doi.org/10.1136/bmj.38119.581991.55.
[7] H. L. Fields and E. B. Margolis, Understanding opioid reward, Trends Neurosci. 38 (2015) 217–225, https://doi.org/10.1016/j.tins.2015.01.002.
[8] PubChem, Available online: https://pubchem.ncbi.nlm.nih.gov/docs/about (accessed in September 2024).
[9] P. Dankelmann, I. Gutman, S. Mukwembi and H. Swart, The edge-Wiener index of a graph, Discrete Math. 309 (2009) 3452–3457, https://doi.org/10.1016/j.disc.2008.09.040.
[10] A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, The edge versions of Wiener index, MATCH Commun. Math. Comput. Chem. 61 (2009) 663–672.
[11] M. H. Khalifeh, H. Yousefi Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin. 30 (2009) 1149–1163, https://doi.org/10.1016/j.ejc.2008.09.019.
[12] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals: total - electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538, https://doi.org/10.1016/0009-2614(72)85099-1.
[13] M. Randic, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609– 6615, https://doi.org/10.1021/ja00856a001.
[14] E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849–855.
[15] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087–1089, https://doi.org/10.1021/ci00021a009.
[16] A. A. Dobrynin and A. A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082–1086, https://doi.org/10.1021/ci00021a008.
[17] H. P. Schultz, Topological organic chemistry 1. Graph theory and topological indices of alkanes, J. Chem. Inf. Comput. Sci. 29 (1989) 227–228, https://doi.org/10.1021/ci00063a012.
[18] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes NY 27 (1994) 9–15.
[19] T. Došlic, I. Martinjak, R. Škrekovski, S. Tipuric Spuževic and I. Zubac, Mostar index, J. Math. Chem. 56 (2018) 2995–3013, https://doi.org/10.1007/s10910-018-0928-z.
[20] Drugs. com, Drug information for healthcare professionals,
https://www.drugs.com/ professionals.html (accessed in September 2024).
[21] Medscape. Available online: https://reference.medscape.com/public/about (accessed in September 2024).
[22] S. Brezovnik, M. Dehmer, N. Tratnik and P. Žigert Pleteršek, Szeged and Mostar root-indices of graphs, Appl. Math. Comput. 442 (2023) #127736, https://doi.org/10.1016/j.amc.2022.127736.
[23] M. Dehmer, Z. Chen, F. Emmert-Streib, A. Mowshowitz, K. Varmuza, L. Feng, H. Jodlbauer, Y. Shi and J. Tao, The Orbit-polynomial: a novel measure of symmetry in networks, IEEE Access 8 (2020) 36100–36112,
https://doi.org/10.1109/ACCESS.2020.2970059.
[24] M. Dehmer, F. Emmert-Streib, A. Mowshowitz, A. Ilic, Z. Chen, G. Yu, L. Feng, M. Ghorbani, K. Varmuza and J. Tao, Relations and bounds for the zeros of graph polynomials using vertex orbits, Appl. Math. Comput. 380 (2020) #125239,
https://doi.org/10.1016/j.amc.2020.125239.