[1] J. Jerebic, S. Klavžar and D. F. Rall, Distance-balanced graphs, Ann. Comb. 12 (2008) 71–79, https://doi.org/10.1007/s00026-008-0337-2.
[2] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20, https://doi.org/10.1021/ja01193a005.
[3] I Gutman, L Popovic, P. V. Khadikar, S. Karmarkar, S. Joshi and M. Mandloi, Relations between Wiener and Szeged indices of monocyclic molecules, MATCH Commun. Math. Comput. Chem. 35 (1997) p. 103.
[4] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes NY , 27 (1994) 9–15.
[5] T. Al-Fozan, P. Manuel, I. Rajasingh and R. S. Rajan, Computing Szeged index of certain nanosheets using partition technique, MATCH Commun. Math. Comput. Chem. 72 (2014) 339–353.
[6] P. V. Khadikar, S. Karmarkar, V. K. Agrawal, J. Singh, A. Shrivastava, I. Lukovits and M. V. Diudea, Szeged index-applications for drug modeling, Lett. Drug Des. Discov. 2 (2005), 606–624, https://doi.org/10.2174/157018005774717334.
[7] G. Indulal, L. Alex and I. Gutman, On graphs preserving PI index upon edge removal, J. Math. Chem. 59 (2021) 1603–1609, https://doi.org/10.1007/s10910-021-01255-1.
[8] P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman and G. Domotor, The Szeged index and an analogy with the Wiener index, J. Chem. Inf. Comput. Sci. 35 (1995) 547–550, https://doi.org/10.1021/ci00025a024.
[9] S. Klavžar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (1996) 45–49, https://doi.org/10.1016/0893-9659(96)00071-7.
[10] S. Simic, I. Gutman and V. Baltic, Some graphs with extremal Szeged index, Math. Slovaca 50 (2000) 1–15.
[11] B. Zhou, X. Cai and Z. Du, On Szeged indices of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 113–132.
[12] A. Ali and T. Došlic, Mostar index: results and perspectives, Appl. Math. Comput. 404 (2021) p. 126245, https://doi.org/10.1016/j.amc.2021.126245.
[13] L. Alex, I. Gopalapillai and J. J. Mulloor, On the inverse problem of some bond additive indices, Commun. Comb. Optim. In press (2024), https://doi.org/10.22049/cco.2024.29470.2019.
[14] L. Alex and I. Gutman, On the inverse mostar index problem for molecular graphs, Trans. Combi. 14 (2024) 65–77, https://doi.org/10.22108/toc.2024.139474.2115.
[15] K. Deng and S. Li, Chemical trees with extremal Mostar index, MATCH Commun. Math. Comput. Chem. 85 (2021) 161–180.
[16] K. Deng and S. Li, On the extremal values for the Mostar index of trees with given degree sequence, Appl. Math. Comput. 390 (2021) p. 125598, https://doi.org/10.1016/j.amc.2020.125598.
[17] T. Došlic, I. Martinjak, R. Skrekovski, S. T. Spuževic and I. Zubac, Mostar index, J. Math. Chem. 56 (2018) 2995–3013, https://doi.org/10.1007/s10910-018-0928-z.
[18] H. Liu, On the maximal Mostar index of tree-type phenylenes, Polycyclic aromatic compounds, 42 (2022) 3829–3843, https://doi.org/10.1080/10406638.2021.1873151.
[19] L. Wei, H. Bian, H. Yu and G. Lin, Extremal cata-condensed benzenoids with two fullhexagons with respect to the Mostar indices, Polycyclic aromatic compounds 44 (2024) 5624–5639,
https://doi.org/10.1080/10406638.2023.2266182.
[20] L. Alex and I. Gopalapillai, On a conjecture on edge Mostar index of bicyclic graphs, Iranian J. Math. Chem. 14 (2023) 97–108, https://doi.org/10.22052/IJMC.2023.248632.1680.
[21] S. Brezovnik and N. Tratnik, General cut method for computing Szeged-like topological indices with applications to molecular graphs, Int. J. Quantum Chem. 121 (2021) e26530, https://doi.org/10.1002/qua.26530.
[22] T. Réti, A. Ali and I. Gutman, On bond-additive and atoms-pair-additive indices of graphs, Electron. J. Math. 2 (2021) 52–61, https://doi.org/10.47443/ejm.2021.0033.
[23] L. Alex and G. Indulal, Sharp bounds on additively weighted Mostar index of cacti, Commun. Comb. Optim. In press (2024), https://doi.org/10.22049/CCO.2024.28757.1702.
[24] A. Yurtas, M. Togan, V. Lokesha, I. N. Cangul and I. Gutman, Inverse problem for Zagreb indices, J. Math. Chem. 57 (2019) 609–615, https://doi.org/10.1007/s10910-018-0970-x.