On Extremal General Multiplicative Zagreb Indices

Document Type : Research Paper

Authors

Department of Mathematics‎, ‎Wolkite University‎, ‎Ethiopia

10.22052/ijmc.2025.255619.1918

Abstract

‎The first general multiplicative Zagreb index $P_1^a(G)$ is the product of the degree of each vertex $v$ in $G$‎, ‎raised to the power $a$ and the second general multiplicative Zagreb index $P_2^a(G)$ is the product of the degree of each vertex $v$ in $G$‎, ‎raised to the power $a$ times the degree of $v$‎, ‎where $a$ is a non-zero real number‎.
‎In this study‎, ‎we present bounds on the general multiplicative Zagreb indices for trees and unicyclic graphs‎. ‎We also provide bounds for the first general multiplicative Zagreb index for trees‎.
‎Additionally‎, ‎we identify all the extremal graphs for each bound mentioned as best as possible‎.

Keywords

Main Subjects


[1] D. B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.
[2] M. Grover, B. Singh, M. Bakshi and S. Singh, Quantitative structure–property relationships in pharmaceutical research–part 1, Pharm. Sci. Technol. Today 3 (2000) 28–35, https://doi.org/10.1016/S1461-5347(99)00214-X.
[3] T. Vetrik and S. Balachandran, General multiplicative Zagreb indices of trees, Discrete Appl. Math. 247 (2018) 341–351, https://doi.org/10.1016/j.dam.2018.03.084.
[4] T. Vetrik and S. Balachandran, General multiplicative Zagreb indices of graphs with given clique number, Opuscula Math. 39 (2019) 433–446, https://doi.org/10.7494/OpMath.2019.39.3.433.
[5] Y. K. Feyissa and T. Vetrik, Bounds on the general eccentric distance sum of graphs, Discrete Math. Lett. 10 (2022) 99–106, https://doi.org/10.47443/dml.2022.070.
[6] Y. K. Feyissa, M. Imran, T. Vetrik and N. Hunde, On the general eccentric distance sum of graphs and trees, Iranian J. Math. Chem. 13 (2022) 239–252, https://doi.org/10.22052/IJMC.2022.246189.1617.
[7] Y. K. Feyissa, Y. G. Aemro and H. T. Teferi, Two general eccentricity–based topological indices, Electron. J. Math. 8 (2024) 31–38, https://doi.org/10.47443/ejm.2024.033.
[8] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total $\phi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538, https://doi.org/10.1016/0009-2614(72)85099-1.
[9] H. Lin, On segments, vertices of degree two and the first Zagreb index of trees, MATCH Commun. Math. Comput. Chem. 72 (2014) 825–834.
[10] B. Borovicanin, On the extremal Zagreb indices of trees with given number of segments or given number of branching vertices, MATCH Commun. Math. Comput. Chem. 74 (2015) 57–79.
[11] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka 18 (2011) 17–23.
[12] K. Xu and H. Hua, A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 241–256.
[13] S. Wang, C. Wang, L. Chen and J.-B. Liu, On extremal multiplicative Zagreb indices of trees with given number of vertices of maximum degree, Discrete Appl. Math. 227 (2017) 166–173, https://doi.org/10.1016/j.dam.2017.04.024.
[14] A. Martínez-Pérez and J. M. Rodríguez, New bounds for topological indices on trees through generalized methods, Symmetry 12 (2020) #1097, https://doi.org/10.3390/sym12071097.
[15] Y. Yao, M. Liu and X. Gu, Unified extremal results for vertex-degree-based graph invariants with given diameter, MATCH Commun. Math. Comput. Chem. 82 (2019) 699–714 .
[16] D. A. Mojdeh, M. Habibi, L. Badakhshian and Y. Rao, Zagreb indices of trees, unicyclic and bicyclic graphs with given (total) domination, IEEE Access. 7 (2019) 94143–94149, https://doi.org/10.1109/ACCESS.2019.2927288.
[17] S. Wang and B. Wei, Multiplicative Zagreb indices of k-trees, Discrete Appl. Math. 180 (2015) 168–175, https://doi.org/10.1016/j.dam.2014.08.017.
[18] R. Kazemi, Note on the multiplicative Zagreb indices, Discrete Appl. Math. 198 (2016) 147–154, https://doi.org/10.1016/j.dam.2015.06.028.
[19] J. Liu and Q. Zhang, Sharp upper bounds for multiplicative Zagreb indices, MATCH Commun. Math. Comput. Chem. 68 (2012) 231–240.
[20] S. Wang, C. Wang and J. B. Liu, On extremal multiplicative Zagreb indices of trees with given domination number, Appl. Math. Comput. 332 (2018) 338–350, https://doi.org/10.1016/j.amc.2018.03.058.
[21] B. Basavanagoud and S. Patil, Multiplicative Zagreb indices and coindices of some derived graphs, Opuscula Math. 36 (2016) 287–299, https://doi.org/10.7494/OpMath.2016.36.3.287.
[22] K. C. Das, A. Yurttas, M. Togan, A. S. Cevik and I. N. Cangul, The multiplicative Zagreb indices of graph operations, Inequal. Appl. 2013 (2013) #90, https://doi.org/10.1186/1029-242X-2013-90.
[23] F. Falahati Nezhad, A. Iranmanesh, A. Tehranian and M. Azari, Strict lower bounds on the multiplicative Zagreb indices of graph operations, Ars Combin. 117 (2014) 399–409.
[24] V. Božovic, Ž. K. Vukicevic and G. Popivoda, Chemical trees with extreme values of a few types of multiplicative Zagreb indices, MATCH Commun. Math. Comput. Chem. 76 (2016) 207–220.
[25] C. Wang, J.-B. Liu and S. Wang, Sharp upper bounds for multiplicative Zagreb indices of bipartite graphs with given diameter, Discrete Appl. Math. 227 (2017) 156–165, https://doi.org/10.1016/j.dam.2017.04.037.
[26] S. Balachandran and T. Vetrík, General multiplicative Zagreb indices of trees with given independence number, Quaest. Math. 44 (2021) 659–668, https://doi.org/10.2989/16073606.2020.1740817.
[27] T. Vetrik and S. Balachandran, General multiplicative Zagreb indices of trees and unicyclic graphs with given matching number, J. Comb. Optim. 40 (2020) 953–973, https://doi.org/10.1007/s10878-020-00643-8.
[28] V. R. Kulli, General multiplicative Zagreb indices of TUC4C8[m; n] and TUC4[m; n] nanotubes, Intern. J. Fuzzy Mathematical Archive 11 (2016) 39–43, https://doi.org/10.22457/ijfma.v11n1a6.
[29] S. Hayat and F. Asmat, Sharp bounds on the generalized multiplicative first Zagreb index of graphs with application to QSPR modeling, Mathematics 11 (2023) #2245, https://doi.org/10.3390/math11102245.
[30] M. R. Alfuraidan, M. Imran, M. K. Jamil and T. Vetrík, General multiplicative Zagreb indices of graphs with bridges, IEEE Access 8 (2020) 118725–118731, https://doi.org/10.1109/ACCESS.2020.3005040.
[31] M. R. Alfuraidan, T. Vetrík and S. Balachandran, General multiplicative Zagreb indices of graphs with a small number of cycles, Symmetry 12 (2020) #514, https://doi.org/10.3390/sym12040514.
[32] M. R. Alfuraidan, S. Balachandran and T. Vetrík, General multiplicative Zagreb indices of unicyclic graphs, Carpath. J. Math. 137 (2021) 1–11.
[33] V. R. Kulli, General multiplicative Revan indices of polycyclic aromatic hydrocarbons and benzenoid systems, Inter. Journal of Recent Scientific Research 9 (2018) 24452–24455.