Geometric-Quadratic Index from a Mathematical Perspective

Document Type : Research Paper

Authors

1 Faculty of Science‎, ‎University of Kragujevac‎, ‎Kragujevac‎, ‎Serbia

2 Department of Mathematics‎, ‎Faculty of Engineering and Natural Sciences‎, ‎Bursa Technical University‎, ‎Bursa‎, ‎Turkey

10.22052/ijmc.2024.255277.1890

Abstract

‎The geometric-quadratic index (GQ) was defined in 2021 by V‎. ‎R‎. ‎Kulli‎. ‎In a recent study‎, ‎QSPR analysis for the octane isomers of GQ and some other newly defined topological indices was presented‎. ‎This analysis has revealed that GQ dominates over many of the well-known topological indices in terms of chemical applicability potential‎, ‎especially for the heat of vaporization‎. ‎These results inspired us to investigate the mathematical properties of GQ‎. ‎In this paper‎, ‎extremal graphs for GQ are investigated among connected graphs‎, ‎trees‎, ‎and unicyclic graphs‎. ‎In addition‎, ‎several mathematical relations between GQ and some well-known topological indices are presented.

Keywords

Main Subjects


[1] M. Pal, S. Samanta and A. Pal, Handbook of Research on Advanced Applications of Graph Theory in Modern Society, Global, Hershey, 66–91, 2020.
[2] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
[3] M. Randic, Generalized molecular descriptors, J. Math. Chem. 7 (1991) 155–168, https://doi.org/10.1007/BF01200821.
[4] V. Kumar and S. Das, On structure sensitivity and chemical applicability of some novel degree-based topological indices, MATCH Commun. Math. Comput. Chem. 92 (2024) 165–203, https://doi.org/10.46793/match.92-1.165K.
[5] B. Furtula, I. Gutman and M. Dehmer, On structure-sensitivity of degreebased topological indices, Appl. Math. Comput. 219 (2013) 8973–8978, https://doi.org/10.1016/j.amc.2013.03.072.
[6] V. R. Kulli, Geometric-quadratic and quadratic-geometric indices, Ann. Pure Appl. Math. 25 (2022) 1–5, http://doi.org/10.22457/apam.v25n1a01854.
[7] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total \pi- electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538, https://doi.org/10.1016/0009-2614(72)85099-1.
[8] I. Gutman, B. Rušcic, N. Trinajstic and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405, https://doi.org/10.1063/1.430994.
[9] D. Vukicevic and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–1376, https://doi.org/10.1007/s10910-009-9520-x.
[10] B. Zhou and N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252–1270, https://doi.org/10.1007/s10910-008-9515-z.
[11] B. Bollobás and P. Erdos, Graphs of extremal weights, Ars Combin. 50 (1998) 225–233.
[12] D. Vukicevic and M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 83 (2010) 243–260.
[13] I. Gutman, Geometric approach to degree-based topological indices: sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.
[14] J. Radon, Über die absolut additiven Mengenfunktionen, Wiener Sitzungsber 122 (1913) 1295–1438.
[15] J. L. Palacios, Applications of Radon’s inequalities to generalized topological descriptors, Contrib. Math 8 (2023) 30–37, https://doi.org/10.47443/cm.2023.036.
[16] B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014) 94–112, https://doi.org/10.1016/j.jsc.2013.09.003.