[1] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2 (1989) 467–472, https://doi.org/10.1137/0402041.
[2] L. Pachter, H. S. Snevily and B. Voxman, On pebbling graphs, Congr. numer 107 (1995) 65–80.
[3] K. Milans and B. Clark, The complexity of graph pebbling, SIAM J. Discrete Math. 20 (2006) 769–798, https://doi.org/10.1137/050636218.
[4] M. Chellali, T. W. Haynes, S. T. Hedetniemi and T. M. Lewis, Restricted optimal pebbling and domination in graphs, Discrete Appl. Math. 221 (2017) 46–53, https://doi.org/10.1016/j.dam.2016.12.029.
[5] S. Alikhani and N. Ghanbari, Sombor index of polymers, MATCH Commun. Math. Comput. Chem. 86 (2021) 715–728.
[6] S. Alikhani and S. Soltani, The distinguishing number and the distinguishing index of graphs from primary subgraphs, Iranian J. Math. Chem. 10 (2019) 223–240, https://doi.org/ 10.22052/IJMC.2019.152413.1400.
[7] S. Bou, A. S. Klymchenko and M. Collot, Fluorescent labeling of biocompatible block copolymers: synthetic strategies and applications in bioimaging, Mater. Adv. 2 (2021) 3213–3233, https://doi.org/10.1039/D1MA00110H.
[8] S. Alikhani and F. Aghaei, More on graph pebbling number, arXiv:2402.10017v1 [math.CO], submitted,
[9] H. S. Snevily and J. A. Foster, The 2-pebbling property and a conjecture of Graham’s, Graphs Combin. 16 (2000) 231–244, https://doi.org/10.1007/PL00021179.
[10] D. S. Herscovici, Graham’s pebbling conjecture on products of cycles, J. Graph Theory 42 (2003) 141–154, https://doi.org/10.1002/jgt.10080.
[11] S. Alikhani and F. Aghaei, More on the 2-restricted optimal pebbling number, arXiv:2308.11028v1 [math.CO], submitted.
[12] S. Alikhani, S. Jahari, M. Mehryar and R. Hasni, Counting the number of dominating sets of cactus chains, Optoelectron. Adv. Mater. Rapid Commun. 8 (2014) 955–960.
[13] D. P. Bunde, E. W. Chambers, D. Cranston, K. Milans and D. B. West, Pebbling and optimal pebbling in graphs, J. Graph Theory 57 (2008) 215–238.
[14] G. Hurlbert, The weight function lemma for graph pebbling, J. Comb. Optim. 34 (2017) 343–361, https://doi.org/10.1007/s10878-016-9993-z.
[15] E. Deutsch and S. Klavzar, Computing Hosoya polynomials of graphs from primary subgraphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 627–644.