[1] T. Doslic, M. Ghorbani and O. Ori, Honoring the memory of professor Ali Reza Ashrafi, J. Disc. Math. Appl. 8 (2023) 5–11, https://doi.org/10.22061/JDMA.2023.9672.1049.
[2] M. Ghorbani, Memories of Me and My Teacher, Professor Seyed Alireza Ashrafi: Iranian Mathematician, Shahid Rajaee Teacher Training University Press, Tehran, 2023.
[3] R. Alidehi–Ravandi, N. Amraei, Z. Vaziri, A. Khalilipour, F. Izadi, A. Damavandi, V. Khodadi and M. Ghorbani, History of mathematical-chemistry in Iran: scientific works of Alireza Ashrafi, J. Disc. Math. Appl. 9 (2024) 31–49, https://doi.org/10.22061/JDMA.2023.10548.1065.
[4] S. Alikhani, M. Pourbabaee, M. Ghorbani and A. Saadatmandi, In memory of professor Ali Reza Ashrafi (1964-2023): a matchless role model in mathematical chemistry in Iran, Iranian J. Math. Chem. 14 (2023) 1–6,
https://doi.org/ 10.22052/IJMC.2023.253009.1726.
[5] M. S. Dresselhaus, G. Dresselhaus and A. Jorio, Applications of Group Theory to the Physics of Solids, Springer, New York, 2008, Chap. 3.
[6] M. Ghorbani, R. Alidehi–Ravandi and M. Dehmer, Automorphism group of polyhedral graphs, Symmetry 16 (2024) #1157, https://doi.org/10.3390/sym16091157.
[7] B. Taeri and M. Arezoomand, The full non-rigid group theory for TBA (tert-butyl alcohol), J. Iran. Chem. Soc. 5 (2008) 514–518, https://doi.org/10.1007/BF03246010.
[8] K. Tapp, Symmetry: A Mathematical Exploration, Springer, New York, 2021.
[9] G. Davidson, Group Theory for Chemists, Red Globe Press London, Springer, 1991.
[10] A. Vincent, Molecular Symmetry and Group Theory: A Programmed Introduction to Chemical Applications, John Wiley & Sons, 2013.
[11] J. S. Ogden, Introduction to Molecular Symmetry, Oxford University Press, 1st edition, 2001.
[12] P. W. Atkins, J. de Paula and J. Keeler, Atkins’ Physical Chemistry, Oxford University Press, Eighth Edition, 2006.
[13] F. Albert Cotton, Cotton Chemical Applications of Group Theory, Wiley-Interscience, 3rd edition, 1990.
[14] C. Vallance, Molecular Symmetry, Group Theory and Applications, Lecturer Notes, https:vallance.chem.ox.ac.uk/ pdfs/ SymmetryLectureNotes.pdf,
[15] A. R. Ashrafi, Full non-rigid group and symmetry of DimethylTrichloro-Phosphorus, Chin. J. Chem. 23 (2005) 829–834, https://doi.org/10.1002/cjoc.200590829.
[16] A. R. Ashrafi and M. Hamadanian, Full non-rigid group theory and symmetry of melamine, J. Iran. Chem. Soc. 2 (2005) 135–139, https://doi.org/10.1007/BF03247204.
[17] M. R. Darafsheh, A. R. Ashrafi and A. Darafsheh, Erratum: the symmetry group of nonrigid tetramethylsilane, Int. J. Quantum Chem. 108 (2008) 1411–1413, https://doi.org/10.1002/qua.21616.
[18] M. R. Darafsheh, A. R. Ashrafi and A. Darafsheh, The symmetry group of non-rigid tetramethylsilane, Int. J. Quantum Chem. 108 (2008) 440–446, https://doi.org/10.1002/qua.21509.
[19] M. R. Darafsheh, Y. Farjami and A. R. Ashrafi, Symmetries of weighted complete graph of tetranitrocubane and octanitrocubane, MATCH Commun. Math. Comput. Chem. 54 (2005) 331–340.
[20] M. V. Putz and O. Ori, On quantum entangled nano-portation: C39 & C43 Fullerenes, Fuller. Nanotub. Carbon Nanostructures 31 (2023) 197–208, https://doi.org/10.1080/1536383X.2022.2133901.
[21] M. V. Putz, O. Ori, M. V. Diudea, B. Szefler and R. Pop, Bondonic Chemistry: Spontaneous Symmetry Breaking of the Topo-reactivity on Graphene, In Distance, Symmetry, and Topology in Carbon Nanomaterials Carbon Materials: Chemistry and Physics, (Eds: A. Ashrafi, M. Diudea), Springer-Verlag, 2016.
[22] M. S. Dresselhaus, G. Dresselhaus and A. Jorio, Group Theory: Application to the Physics of Condensed Matter, Springer, 2007.
[23] S. Madani and A. R. Ashrafi, Symmetry and two symmetry measures for the web and spider web graphs, J. Appl. Math. Comput. 64 (2020) 737–748,
https://doi.org/10.1007/s12190-020-01376-x.
[24] Z. Mehranian and A. R. Ashrafi, Topological Indices of 3-Generalized Fullerenes, In: Distance, Symmetry and Topology in Carbon Nanomaterials, Symmetry, and Topology in Carbon Nanomaterials. Carbon Materials: Chemistry and Physics, Springer-Verlag, (2016),
https://doi.org/10.1007/978-3-319-31584-3_17.
[25] Z. Mehranian, A. Gholami and A. R. Ashrafi, Experimental results on the symmetry and topology of 3- and 4-generalized fullerenes, J. Comput. Theor. Nanosci. 11 (2014) 2283–2288, https://doi.org/10.1166/jctn.2014.3637.
[26] M. Yavari and A. R. Ashrafi, On the symmetry of a zig-zag and an armchair polyhex carbon nanotorus, Symmetry 1 (2009) 145–152, https://doi.org/10.3390/sym1020145.
[27] A. R. Ashrafi and M. R. Ahmadi, Symmetry of fullerene C60, Iran. J. Math. Sci. Inform. 1 (2006) 1–13.
[28] M. Hamadanian and A. R. Ashrafi, The full non-rigid group theory for Cis & trans-diamino dichloro platinum (II) and trimethylamine, Croat. Chem. Acta. 76 (2003) 305–312.
[29] A. R. Ashrafi and M. R. Ahmadi, New computer program to calculate the symmetry of molecules, Cent. Eur. J. Chem. 3 (2005) 647–657, https://doi.org/10.2478/BF02475193.
[30] A. R. Ashrafi and A. Loghman, PI index of zig-zag polyhex nanotubes, MATCH Commun. Math. Comput. Chem. 55 (2006) 447–452.
[31] A. R. Ashrafi and G. R. Vakili-Nezhaad, Computing the PI index of some chemical graphs related to nanostructures, J. Phys.: Conf. Ser. 29 (2006) #181, https://doi.org/10.1088/1742-6596/29/1/035.
[32] A. Gholami, J. Safaei-Ghomi, A. R. Ashrafi and M. Ghorbani, Symmetry of tetrahydroxycalix[4]arenes, J. Serb. Chem. Soc. 71 (2006) 1025–1029, https://doi.org/10.2298/JSC0610025G.
[33] G. A. Mansoori, G. R. Vakili-Nezhaad and A. R. Ashrafi, Some mathematical concepts applicable in nanothermodynamics, Int. J. Pure Appl. Math. Sci. 2 (2005) 58–61.
[34] G. R. Vakili-Nezhaad and A. R. Ashrafi, Application of a mathematical problem to the symmetry of fullerene C60, J. Phys.: Conf. Ser. 29 (2006) #14, https://doi.org/10.1088/1742-6596/29/1/003.
[35] G. A. Moghani and A. R. Ashrafi, On symmetry of some non-transitive chemical graphs, Croat. Chem. Acta 79 (2006) 465–469.
[36] G. A. Moghani and A. R. Ashrafi, On the PI index of some nanotubes, J. Phys.: Conf. Ser. 29 (2006) #159, https://doi.org/10.1088/1742-6596/29/1/030.
[37] G. A. Moghani, A. R. Ashrafi and M. Hamadanian, Symmetry properties of tetraammine platinum(II) with C2v and C4v point groups, J. Zhejiang Univ. Sci. B 6 (2005) 222–226, https://doi.org/10.1631/jzus.2005.B0222.
[38] G. A. Moghani, A. R. Ashrafi, S. Naghdi and M. A. Ahmadi, Automorphism groups of some chemical graphs, London Math. Soc. Lecture Note Ser. 340 (2007) #630, https://doi.org/10.13140/RG.2.1.1295.3764.
[39] G. R. Vakili-Nezhaad, G. A. Mansoori and A. R. Ashrafi, Symmetry property of fullerenes, J. Comput. Theor. Nanosci. 4 (2007) 1202–1205, https://doi.org/10.1166/jctn.2007.2398.
[40] A. R. Ashrafi, On a new algorithm for computing symmetry of big fullerenes, Collect. Czech. Chem. Commun. 71 (2006) 1270–1277,
https://doi.org/10.1135/cccc20061270.
[41] A. R. Ashrafi, On symmetry properties of molecules, Chem. Phys. Lett. 406 (2005) 75–80, https://doi.org/10.1016/j.cplett.2005.02.069.
[42] A. R. Ashrafi, Computing symmetry of dendrimers by wreath product formalism, Symmetry: Cult. Sci. 19 (2008) 263–268.
[43] A. R. Ashrafi and A. Gholami, Symmetry of tetra-tert-butyltetrahedrane, Asian J. Chem. 19 (2007) 569–573.
[44] M. Hamadanian and A. R. Ashrafi, On the symmetry of bis benzene Chromium(0) with D6d point group, J. Argent. Chem. Soc. 94 (2006) 47–53.
[45] A. R. Ashrafi and M. Hamadanian, Symmetry properties of some chemical graphs, Croat. Chem. Acta 78 (2005) 159–163.
[46] A. R. Ashrafi, F. Koorepazan–Moftakhar and M. V. Diudea, Distance Under Symmetry: (3,6)-Fullerenes. In: Distance, Symmetry, and Topology in Carbon Nanomaterials. Carbon Materials: Chemistry and Physics, Springer-Verlag, 2016.
[47] A. R. Ashrafi, F. Koorepazan-Moftakhar and M. V. Diudea, Topological symmetry of nanostructures, Fuller. Nanotub. Carbon Nanostructures 23 (2015) 989–1000, https://doi.org/10.1080/1536383X.2015.1057818.
[48] A. R. Ashrafi, F. Koorepazan-Moftakhar and O. Ori, Symmetry and Topology of Graphenes, In: Graphene Science Handbook: Nanostructure and Atomic Arrangement, M. Aliofkhazraei, N. Ali, W. I. Milne, C. S. Ozkan, S. Mitura, J. L. Gervasoni (eds.), CRC Press, Taylor & Francis Group, 2016, #159–164.
[49] A. Gholami and A. R. Ashrafi, Calculating the symmetry of C24 fullerene, Asian J. Chem. 20 (2008) 838–844.
[50] A. Gholami and A. R. Ashrafi, Symmetry of dimanganese decacarbonyl with D4d point group, Indian J. Chem. 47A (2008) 225–227.
[51] A. Gholami, A. R. Ashrafi and M. Ghorbani, Symmetry of benzenoid chains, Bull. Chem. Technol. Macedonia. 25 (2006) 23–27.
[52] A. Gholami, A. R. Ashrafi and F. Nazari, Calculating the symmetry of hexamethylcyclohexane, Maced. J. Chem. Chem. Eng. 26 (2007) 115–124.
[53] F. Koorepazan-Moftakhar and A. R. Ashrafi, Distance under symmetry, MATCH Commun. Math. Comput. Chem. 74 (2015) 259–272.
[54] F. Koorepazan-Moftakhar and A. R. Ashrafi, Note on symmetry of molecules, MATCH Commun. Math. Comput. Chem. 78 (2017) 273–279.
[55] F. Koorepazan-Moftakhar and A. R. Ashrafi, Symmetry and PI index of C60+12n fullerenes, J. Comput. Theor. Nanosci. 10 (2013) 2484–2486, https://doi.org/10.1166/jctn.2013.3235.
[56] F. Koorepazan-Moftakhar, A. R. Ashrafi and Z. Mehranian, Symmetry and PI polynomials of C50+10n fullerenes, MATCH Commun. Math. Comput. Chem. 71 (2014) 425–436.
[57] F. Koorepazan-Moftakhar, A. R. Ashrafi, O. Ori and M. V. Putz, An Algebraic Modification of Wiener and Hyper–Wiener Indices and Their Calculations for Fullerenes, In: A. Ashrafi and M. Diudea (eds) Distance, Symmetry, and Topology in Carbon Nanomaterials. Carbon Materials: Chemistry and Physics, 9 Springer, Cham, 2016, https://doi.org/10.1007/978-
3-319-31584-3_3.
[58] F. Koorepazan-Moftakhar, O. Ori and A. R. Ashrafi, Symmetry-based invariants of nanostructures and their effect on edge states of carbon nanotubes, Fuller. Nanotub. Carbon Nanostructures 27 (2019) 215–224, https://doi.org/10.1080/1536383X.2018.1558402.
[59] A. R. Ashrafi and M. Ghorbani, A note on markaracter tables of finite groups, MATCH Commun. Math. Comput. Chem. 59 (2008) 595–603.
[60] A. R. Ashrafi and M. Ghorbani, Computational study of fullerenes by Gap, Dig. J. Nanomater. Biostructures 4 (2009) 313– 317.
[61] A. R. Ashrafi and M. Ghorbani, Computer application of GAP to the evaluation of numbers of permutational isomers of hetero fullerenes, MATCH Commun. Math. Comput. Chem 60 (2008) 359–367.
[62] A. R. Ashrafi and M. Ghorbani, Counting the number of hetero fullerenes, J. Comput. Theor. Nanosci. 3 (2006) 803–810, https://doi.org/10.1166/jctn.2006.019.
[63] M. V. Diudea, A. R. Ashrafi and M. Hakimi-Nezhaad, Symmetry of hyperadamantanes, Fuller. Nanotub. Carbon Nanostructures 28 (2020) 650–655, https://doi.org/10.1080/1536383X.2020.1737024.
[64] M. V. Diudea, A. Parvan–Moldovan, F. Koorepazan–Moftakhar and A. R. Ashrafi, Topological Symmetry of Multi-shell Clusters, In: A. Ashrafi and M. Diudea (eds) Distance, Symmetry and Topology in Carbon Nanomaterials, Carbon Materials: Chemistry and Physics, 9 Springer, Cham, 2016, https://doi.org/10.1007/978-3-319-31584-3_5.
[65] M. Faghani, G. Y. Katona, A. R. Ashrafi and F. Koorepazan-Moftakhar, A Lower Bound for Graph Energy of Fullerenes, In: A. Ashrafi and M. Diudea (eds) Distance, Symmetry, and Topology in Carbon Nanomaterials. Carbon Materials: Chemistry and Physics, 9 Springer, Cham, 2016, https://doi.org/10.1007/978-3-319-31584-3_26.
[66] M. Ghorbani and A. R. Ashrafi, Computing USCI table of an infinite family of fullerenes, J. Comput. Theor. Nanosci. 9 (2012) 681–687, https://doi.org/10.1166/jctn.2012.2079.
[67] M. Ghorbani and A. R. Ashrafi, The cycle index of the symmetry group of fullerenes C24 and C150, Asian J. Chem. 19 (2007) 1109–1114.
[68] M. Ghorbani, M. Songhori, A. R. Ashrafi and A. Graovac, Symmetry group of (3,6)-fullerenes, Fuller. Nanotub. Carbon Nanostructures 23 (2015) 788–791, https://doi.org/10.1080/1536383X.2014.993064.
[69] G. Y. Katona, M. Faghani and A. R. Ashrafi, Centrosymmetric graphs and a lower bound for graph energy of fullerenes, Discuss. Math. Graph Theory 34 (2014) 751–768.
[70] M. Mirzargar, M. J. Nadjafi-Arani and A. R. Ashrafi, Topological symmetry of two families of dendrimers, Stud. Univ. Babes-Bolyai Chem. 56 (2011) 273–278.
[71] H. Shabani, A. R. Ashrafi and M. Ghorbani, Note on markaracter tables of finite groups, SUT J. Math. 52 (2016) 133–140,
https://doi.org/10.55937/sut/1483717316.
[72] H. Shabani, A. R. Ashrafi and M. Ghorbani, Rational character table of some finite groups, J. Algebr. Syst. 3 (2016) 151–169, https://doi.org/ 10.22044/JAS.2015.615.
[73] M. Yavari and A. R. Ashrafi, A new method for computing the symmetry of big fullerene C180, Asian J. Chem. 20 (2008) 5119–5122.
[74] P. W. Fowler and J. E. Cremona, Fullerenes containing fused triples of pentagonal rings, J. Chem. Soc., Faraday Trans. 93 (1997) 2255–2262, https://doi.org/10.1039/A701271C.
[75] P. W. Fowler, D. E. Manolopoulos, D. B. Redmond and R. Ryan, Possible symmetries of fullerenes structures, Chem. Phys. Lett. 202 (1993) 371–378, https://doi.org/10.1016/0009-2614(93)90055-6.
[76] F. Koorepazan-Moftakhar, A. R. Ashrafi, Z. Mehranian and M. Ghorbani, Automorphism group and fixing number of (3,6)–and (4,6)–fullerene graphs, Electron. Notes Discrete Math. 45 (2014) 113–120, https://doi.org/10.1016/j.endm.2013.11.022.
[77] M. Deza, M. D. Sikiric and P. W. Fowler, The symmetries of cubic polyhedral graphs with face size no larger than 6, MATCH Commun. Math. Comput. Chem. 61 (2009) 589–602.
[78] M. Ghorbani and S. Klavžar, Modified Wiener index via canonical metric representation, and some fullerene patches, Ars Math. Contemp. 11 (2016) 247–254, https://doi.org/10.26493/1855-3974.918.0b2.
[79] M. Deza and M. Dutour, Zigzag structure of simple two-faced polyhedra, Combin. Probab. Comput. 14 (2005) 31–57, https://doi.org/10.1017/S0963548304006583.
[80] W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, 1897.
[81] S. Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and Chemical Compounds, University of Kragujevac, Faculty of Science, Kragujevac, 2013.
[82] S. Fujita, The unit-subduced-cycle-index methods and the characteristic-monomial method. Their relationship as group theoretical tools for chemical combinatorics, J. Math. Chem. 30 (2001) 249–270, https://doi.org/10.1023/A:1015166625910.
[83] S. Fujita, A simple method for enumeration of non-rigid isomers: An application of characteristic monomials, Bull. Chem. Soc. Jpn. 72 (1999) 2403–2407, https://doi.org/10.1246/bcsj.72.2403.
[84] S. Fujita, Characteristic monomials with chirality fittingness for combinatorial enumeration of isomers with chiral and achiral ligands, J. Chem. Inf. Comput. Sci. 40 (2000) 1101–1112, https://doi.org/10.1021/ci000030l.
[85] S. Fujita, Diagrammatical Approach to Molecular Symmetry and Enumeration of Stereoisomers, University of Kragujevac, Kragujevac, 2007.
[86] S. Fujita, Inherent automorphism and Q-conjugacy character tables of finite groups: an application to combinatorial enumeration of isomers, Bull. Chem. Soc. Jpn. 71 (1998) 2309–2321, http://dx.doi.org/10.1246/bcsj.71.2309.
[87] S. Fujita, Markaracter tables and Q-conjugacy character tables for cyclic groups: an application to combinatorial enumeration, Bull. Chem. Soc. Jpn. 71 (1998) 1587–1596,
https://doi.org/10.1246/bcsj.71.1587.
[88] S. Fujita, Maturity of finite groups: an application to combinatorial enumeration of isomers, Bull. Chem. Soc. Jpn. 71 (1998) 2071–2080, https://doi.org/10.1246/bcsj.71.2071.
[89] S. Fujita, Mobius function and characteristic monomials for combinatorial enumeration, Theor. Chem. Acc. 101 (1999) 409–420, https://doi.org/10.1007/s002140050458.
[90] S. Fujita, Subduction of Q-conjugacy representations and characteristic monomials for combinatorial enumeration, Theor. Chem. Acc. 99 (1998) 224–230, https://doi.org/10.1007/s002140050330.
[91] S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry, Springer-Verlag, Berlin-Heidelberg, 1991.
[92] S. Fujita, Systematic enumeration of ferrocene derivatives by unit-subduced-cycleindex method and characteristic-monomial method, Bull. Chem. Soc. Jpn. 72 (1999) 2409–2416, https://doi.org/10.1246/bcsj.72.2409.
[93] H. Fripertinger, The cycle index of the symmetry group of the fullerene C60, MATCH Commun. Math. Comput. Chem. 33 (1996) 121–138.
[94] M. Faghani and M. Ghorbani, The number of permutational isomers of CL20 molecule, MATCH Commun. Math. Comput. Chem. 65 (2011) 21–26.
[95] M. Ghorbani and M. Jalali, Counting numbers of permutational isomers of hetero fullerenes, Digest J. Nanomater. Biostruct. 3 (2008) 269–275.
[96] M. Jalali and M. Ghorbani, Counting numbers of permutational isomers of an infinite family of fullerenes, Studia Univ. Babes–Bolyai, Chem. 54 (2009) #145.
[97] M. Ghorbani, Enumeration of heterofullerenes: a survey, MATCH Commun. Math. Comput. Chem. 68 (2012) 381–414.
[98] K. Balasubramanian, O. Ori, F. Cataldo, A. R. Ashrafi and M. V. Putz, Face colorings and chiral face colorings of icosahedral giant fullerenes: C80 to C240, Fuller. Nanotub. Carbon Nanostructures 29 (2021) 1–12, https://doi.org/10.1080/1536383X.2020.1794853.
[99] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20, https://doi.org/10.1021/ja01193a005.
[100] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and application, Acta Appl. Math. 66 (2001) 211–249, https://doi.org/10.1023/A:1010767517079.
[101] A. Dobrynin and I. Gutman, On a graph invariant related to the sum of all distances in a graph, Publ. Inst. Math. (Beograd) (N.S.) 56 (1994) 18–22.
[102] I. Gutman, Distance of thorny graphs, Publ. Inst. Math. (Beograd) (N.S.) 63 (1998) 31–36.
[103] I. Gutman and Y. -N. Yeh, The sum of all distances in bipartite graphs, Math. Slovaca 45 (1995) 327–334.
[104] I. Gutman, Y.-N. Yeh and J. -C. Chen, On the sum of all distances in graphs, Tamkang J. Math. 25 (1994) 83–86, https://doi.org/10.5556/j.tkjm.25.1994.4428.
[105] M. Lepovic and I. Gutman, A collective property of trees and chemical trees, J. Chem. Inf. Comput. Sci. 38 (1998) 823–826,
https://doi.org/10.1021/ci980004b.
[106] I. Gutman, A new method for the calculation of the Wiener number of acyclic molecules, J. Mol. Struct. (Theochem) 285 (1993) 137–142, https://doi.org/10.1016/0166-1280(93)87027-B.
[107] I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. Sect. A 36A (1997) 128–132.
[108] I. Gutman, Calculating the Wiener number: the Doyle–Graver method, J. Serb. Chem. Soc. 58 (1993) #745.
[109] I. Gutman and A. A. Dobrynin, The Szeged index – a success story, Graph Theory Notes N. Y. 34 (1998) 37–44.
[110] I. Gutman, E. Estrada and O. Ivanciuc, Some properties of the Wiener polynomial of trees, Graph Theory Notes N. Y. 36 (1999) 7–13.
[111] I. Gutman, W. Linert, I. Lukovits and A. A. Dobrynin, Trees with extremal hyper-Wiener index: Mathematical basis and chemical applications, J. Chem. Inf. Comput. Sci. 37 (1997) 349–354, https://doi.org/10.1021/ci960139m.
[112] I. Gutman and J. H. Potgieter, Wiener index and intermolecular forces, J. Serb. Chem. Soc. 62 (1997) 185–192.
[113] I. Gutman, Y. N. Yeh, S. L. Lee and J. C. Chen, Wiener numbers of dendrimers, MATCH Commun. Math. Comput. Chem. 30 (1994) 103–115.
[114] I. Gutman, Y. N. Yeh, S. L. Lee and Y. L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651–661.
[115] A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53–62.
[116] R. Pinal, Effect of molecular symmetry on melting temperature and solubility, Org. Biomol. Chem. 2 (2004) 2692–2699.
[117] M. Knor, R. Škrekovski and A. Tepeh, Trees with the maximal value of Graovac-Pisanski index, Appl. Math. Comput. 358 (2019) 287–292, https://doi.org/10.1016/j.amc.2019.04.034.
[118] F. Koorepazan-Moftakhar, A. R. Ashrafi and O. Ori, Symmetry groups and Graovac– Pisanski index of some linear polymers, Quasigroups Related Systems 26 (2018) 87–102.
[119] N. Tratnik, The Graovac-Pisanski index of zig-zag tubulenes and the generalized cut method, J. Math. Chem. 55 (2017) 1622–1637, https://doi.org/10.1007/s10910-017-0749-5.
[120] A. R. Ashrafi and H. Shabani, The modified Wiener index of some graph operations, Ars Math. Contemp. 11 (2016) 277–284, https://doi.org/10.26493/1855-3974.801.968.
[121] M. Ghorbani and M. Hakimi-Nezhaad, An algebraic study of non-classical fullerenes, Fuller. Nanotub. Carbon Nanostructures 24 (2016) 385–390, https://doi.org/10.1080/1536383X.2015.1090433.
[122] M. Ghorbani, M. Hakimi-Nezhaad and F. Abbasi-Barfaraz, An algebraic approach to the Wiener number, J. Appl. Math. Comput. 55 (2017) 629–643,
https://doi.org/10.1007/s12190-016-1053-4.
[123] H. Shabani and A. R. Ashrafi, Symmetry–moderated Wiener index, MATCH Commun. Math. Comput. Chem. 76 (2016) 3–18.
[124] I. Gutman, M. Togan, A. Yurttas, A. S. Cevik and I. N. Cangul, Inverse problem for sigma index, MATCH Commun. Math. Comput. Chem. 79 (2018) 491–508.
[125] X. Li, Y. Mao and I. Gutman, Inverse problem on the Steiner Wiener index, Discuss. Math. Graph Theory 38 (2018) 83–95, https://doi.org/10.7151/dmgt.2000.
[126] M. I. Skvortsova I. I. Baskin, O. L. Slovokhotova, V. A. Palyulin and N. S. Zefirov, Inverse problem in QSAR/QSPR studies for the case of topological indexes characterizing molecular shape (Kier indices), J. Chem. Inf. Comput. Sci. 33 (1993) 630–634, https://doi.org/10.1021/ci00014a017.
[127] A. Yurtas, M. Togan, V. Lokesha, I. N. Cangul and I. Gutman, Inverse problem for Zagreb indices, J. Math. Chem. 57 (2019) 609–615, https://doi.org/10.1007/s10910-018-0970-x.
[128] A. R. Ashrafi, F. Koorepazan-Moftakhar, M. V. Diudea and O. Ori, Graovac–Pisanski index of fullerenes and fullerene–like molecules, Fuller. Nanotub. Carbon Nanostructures 24 (2016) 779–785, https://doi.org/10.1080/1536383X.2016.1242483.
[129] F. Koorepazan-Moftakhar, A. R. Ashrafi, O. Ori and M. V. Putz, Geometry and Topology of Nanotubes and Nanotori, In: M. Putz and O. Ori (eds) Exotic Properties of Carbon Nanomatter. Carbon Materials: Chemistry and Physics, 8 Springer, Dordrecht, 2015, https://doi.org/10.1007/978-94-017-9567-8_6.