Generalized Schultz and Gutman Indices

Document Type : Research Paper


1 Department of Mathematics, Bearys Institute of Technology, Mangaluru-574199, Karnataka, INDIA

2 Department of Mathematics, Bangalore University, Janabharathi Campus, Bengaluru-560 056, Karnataka, INDIA



The degree and distance both are significant concepts
in graphs with widespread utilization. The combined study of
these concepts has given a new direction to the topological in-
dices. In this article, we present the generalized degree distance
indices (Generalized First Schultz indices) DD(a;b), and generalized
Gutman indices (Second Schultz indices) ZZ(a;b). The computed
values of these indices on certain families of graphs along with some
bounds and characterizations are obtained. Also, we present the
relationship between DD(a;b) and ZZ(a;b). Further, we present the
Schultz polynomials along with the statistical analysis of certain


  1. Ali, A. K. K. Syed, A. R. Osamah and A. Faizul, Degree-based topological indices and polynomials of hyaluronic acid-curcumin conjugates, Saudi Pharm. J. 28 (9) (2020) 1093–1100.
  2. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, New Delhi, 2006.
  3. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, On the degree distance of a graph, Discrete Appl. Math. 157 (13) (2009) 2773–2777.
  4. C. Das and T. Vetrík, General Gutman index of a graph, MATCH Commun. Math. Comput. Chem. 89 (2023) 583–603.
  5. A. Dobrynin and A. A. Kochetova, Degree distance of a graph: A degree analog of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (5) (1994)1082–1086.
  6. Du and B. Zhou, Degree distance of unicyclic graph, Filomat, 24 (4) (2010) 95–120.
  7. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1969.
  8. Gutman, Degree-based topological indices, Croat. Chem. Acta. 86 (4) (2013) 351–361.
  9. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (5) (1994)1087–1089.
  10. Gutman, B. Furtula and K. C. Das, On some degree-and-distance-based graph invariants of trees, Appl. Math.Comput. 289 (2016) 1– 6.
  11. Kanwal and I. Tomescu, Bounds for degree distance of a graph, Math. Rep. (Bucur.) 17 (3) (2015) 337–344.
  12. Klav┼żar and I. Gutman, A comparison of the Schultz molecular topological index with the Wiener index, J. Chem. Inf. Comput. Sci. 36 (5) (1996) 1001–1003.
  13. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen, Sitzungsber. Acad. Wissen. Wien. 122 (1913) 1295–1438.
  14. Réti, A. Ali and I. Gutman, On bond-additive and atoms-pair-additive indices of graphs, Electron. J. Math. 2 (2021) 52–61.
  15. P. Schultz, Topological organic chemistry 1. Graph theory and topological indices of alkanes, J. Chem. Inf. Comput. Sci. 29 (3) (1989) 227–228.
  16. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math. 98 (1-2) (1999) 159–163.
  17. Vetrík, General degree distance of graphs, J. Algebra Comb. Discrete Struct. Appl. 8 (2021) 107–118.
  18. B. West, Introduction to Graph Theory, Prentice Hall, 2001.