Investigations of Solvent Effect on Electrochemical and Electronically Properties of Some Quinone Drugs: A Computational Study

Document Type : Research Paper


1 Department of Chemistry, Faculty of Science, Ayatollah Borujerdi University, Borujerd, Iran

2 Department of Chemistry, Payame Noor University (PNU), P. O. Box, 19395-3697, Tehran, Iran

3 Department of Mathematics, Faculty of Science, Ayatollah Borujerdi University, Borujerd, Iran



Quantum mechanics computations were performed for some quinones drugs using Gaussian 09 and density functional theory at the B3LYP/6-311G* level in liquid and in the phase of gas. The model of the polarized continuum is applied to measure solvation energies. Electrode potentials (E°1/2), hardness index (η), chemical potential (μ), energy gap (Eg), and electrophilicity (ω) of some important quinone derivatives in three solvents with different polarities (MeOH, DMSO, and THF) have been calculated. Consequences show that this approach could be advantageous in our prognosis of the electrode potentials of molecules in various solvents. We have demonstrated the 2, 5-dimethyl-1, 4-benzoquinone is more reactive than the anthraquinone and phenyl-1, 4-benzo quinone. Also, its antioxidant activity is larger than that of the other quinone-based drugs.


  1. J. Berdy, M. Aszalos and K. L. McNitt, Quinone and Similar Antibiotics, III CRC Press Inc., Baca Raton, Florida, 1980.
  2. R. J. Driebergen, J. Den Hartigh, J. J. M. Holthuis, A. Hulshoff, W. J. van Oort, S. J. Postma Kelder, W. Verboom, D. N. Reinhoudt, M. Bos and W. E. van der Linden, Electrochemistry of potentially bioreductive alkylating quinones: Part 1. Electrochemical properties of relatively simple quinones, as model compounds of mitomycin- and aziridinylquinone-type antitumour agents, Anal. Chim. Acta 233 (1990) 251-268.
  3. Y. Chizmadzhev, Electrochemical Properties of Reversible Biological Redox Systems (in Russian), Nauka, Moscow, 1989.
  4. S. A. Petrova, M. V. Kolodyazhny and O. S. Ksenzhek, Electrochemical properties of some naturally occurring quinones, J. Electroanal. Chem. 277 (1-2) (1990) 189-196.
  5. H. Berg, Biological Electrochemistry, Academic Press, New York, 1983.
  6. E. Soleimani, S. A. N. Taheri and M. Sargolzaei, Zinc, copper and nickel complexes of a macrocycle synthesized from pyridinedicarboxylic acid: A spectroscopic, thermal and theoretical study, J. Serbian Chem. Soc. 82 (2017) 665-680.
  7. A. Bafekry, M. Shahrokhi, M. Yagmurcukardes, D. Gogova, M. Ghergherehchi, B. Akgenc and S. A. H. Feghhi, Surface functionalization of the honeycomb structure of zinc antimonide (ZnSb) monolayer: A first-Principles study, Surf. Sci. 707 (2021) 121796.
  8. M. Attarbashi, S. Zabarjad Shiraz and M. Samadizadeh, The evaluation of chemoselectivity in multicomponent domino Knoevenagel/Diels–Alder reaction: A DFT study, J. Serbian Chem. Soc. 86 (2021) 1053-1065.
  9. A. Reisi-Vanani, L. Shahrokh and S. N. Kokhdan, Theoretical study of the corannulene ozonolysis and evaluation of the various reaction paths, Comput. Theor. Chem. 1051 (2015) 72-78.
  10. B. Gao, J. -R. Zhang, L. Chen, J. Guo, S. Shen, C. -T. Au, S. -F. Yin and M. -Q. Cai, Density functional theory calculation on two-dimensional MoS2/BiOX (X = Cl, Br, I) van der Waals heterostructures for photocatalytic action, Appl. Surf. Sci. 492 (2019) 157-165.
  11. S. Ghasemi, M. Ramezani Taghartapeh, A. Soltani and P. J. Mahon, Adsorption behavior of metformin drug on boron nitride fullerenes: Thermodynamics and DFT studies, J. Mol. Liq. 275 (2019) 955-967.
  12. A. Reisi-Vanani, S. Rahimi, S. N. Kokhdan and H. Ebrahimpour-Komleh, Computational study of the gas phase reaction of hydrogen azide and corannulene: A DFT study, Comput. Theo. Chem. 1070 (2015) 94–101.
  13. C. A. Mebi, DFT study on structure, electronic properties, and reactivity of cis-isomers of [(NC5H4 -S)2Fe(CO)2], J. Chem. Sci. 123 (2011) 727-731.
  14. R. Ahmadi, Computational study of chemical properties of Captopril drug and the connected form to Fullerene (C60) as a medicine nano carrier, J. Phys. Theor. Chem. 9 (3) (2012) 185-190.
  15. R. G. Parr and R. G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc. 105 (26) (1983) 7512-7516.
  16. S. Mannino, O. Brenna, S. Buratti and M. S. Cosio, A new method for the evaluation of the ‘antioxidant power’ of wines, Electroanalysis 10 (13) (1998) 908-912.
  17. K. E. Yakovleva, S. A. Kurzeev, E. V. Stepanova, T. V. Fedorova, B. A. Kuznetsov and O. V. Koroleva, Characterization of plant phenolic compounds by cyclic voltammetry, Appl. Biochem. Microbiol. 43 (2007) 661-668.
  18. S. Martinez, L. Valek, J. Rešetić and D. Ferenec Ružić, Cyclic voltammetry study of plasma antioxidant capacity–Comparison with the DPPH and TAS spectrophotometric methods, J. Electroanal. Chem. 588 (1) (2006) 68-73.
  19. Z. Javanshir, M. Razavi Mehr and M. H. Fekri, Experimental and computational studies on the electrochemical behavior of Carvacrol and Menthol, Iran. J. Chem. Chem. Eng. 40 (2) (2021) 487-499.
  20. T. Stefan and R. Janoschek, How relevant are S=O and P=O double bonds for the description of the acid molecules H2SO3, H2SO4, and H3PO4, respectively?, J. Mol. Model. 6 (2000) 282-288.
  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
  22. S. Nasiri Kokhdan, A. Reisi-Vanani and M. Hamadanian, Molecular structure, spectroscopic and NBO analysis of C32H12 as a new buckybowl and a sub-fullerene structure, Polycyclic Aromat. Compd. 40 (3) (2020) 693-704.
  23. A. Ghaempanah, S. Jameh-Bozorghi, M. Darvishpour and M. H. Fekri, Electrochemical calculations of some non-steroidal anti-inflammatory drugs: solvent effect and antioxidant activity, Int. J. Electrochem. Sci. 7 (2012) 6127-6133.
  24. M. H. Fekri, A. Omrani and S. Jamehbozorgi, Study of electrochemical and electronical properties on the some Schiff base Ni somplexes in DMSO solvent by computational methods, Adv. J. Chem. A 2 (1) (2019) 14-20.
  25. S. Nasiri Kokhdan, A. Reisi-Vanani and M. Hamadanian, Ab initio and TD-DFT study of the structural and spectroscopic properties of C30H10, as a new buckybowl, Fuller‎. ‎Nanotub‎. ‎Car‎. ‎N. 24 (9) (2016) 577-587.
  26. S. Jameh-Bozorghi, M. Darvishpour, S. Mostghiman and Z. Javanshir, Solvent effect on the redox potentials of tetraethyl ammonium hexacyanomanganate(III): A computational study, Int. J. Electrochem. Sci. 6 (2011) 4891-4899.
  27. S. Jameh-Bozorghi, M. Darvishpour, S. Mohhammadi and Z. Javanshir, Predictions of solvent effects on ionization constants of two sulfonic acids, J. Electrochem. Sci. 6 (2011) 5031-5037.
  28. M. H. Fekri, R. Bazvand, M. Solymani and M. Razavi Mehr, Adsorption behavior, electronical and thermodynamic properties of ornidazole drug on C60 fullerene doped with Si, B and Al: A quantum mechanical simulation, Phys. Chem. Res. 9 (1) (2020) 151-164.
  29. A. H. Kianfar, S. Zargari and H. R. Khavasi, Synthesis and electrochemistry of M(II) N2O2 schiff base complexes: X-Ray structure of {Ni[Bis(3-chloroacetylacetone)ethylenediimine]}, J. Iran. Chem. Soc. 7 (2010) 908-916.
  30. M. Rezaei Sameti and F. Ataeifar, The theoretical study of adsorption of HCN gas on the surface of pristine, Ge, P and GeP-doped (4, 4) armchair BNNTs, Iran. Chem. Commun. 6 (2018) 280-292.
  31. R. G. Parr, L. V. Szentpály and S. Liu, Electrophilicity index, J. Am. Chem. Soc. 121 (1999) 1922-1924.
  32. M. H. Fekri, A. Beyranvand, H. Dashti Khavidaki and M. Razavi Mehr, Cycloaddition [2+2] interaction of some corticosteroid drugs with C60 nano fullerene: A theoretical study, Int. J. Nano Dimens. 12 (2) (2021) 156-163.
  33. M. H. Fekri, R. Bazvand, M. Solymani and M. Razavi Mehr, Adsorption of metronidazole drug on the surface of nano fullerene C60 doped with Si, B and Al: A DFT study, Int. J. Nano Dimens. 11 (4) (2020) 346-354.